Skip to main content
Log in

Paired-wire carrying current actuators and piezoelectric beam sensors for microelectromechanical systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

An alternative actuator for MEMS/NEMS device is proposed and analyzed. The actuator is based on the paired-wires (PW) carrying current concept, which makes the actuator extremely simple and cost-effective. This actuator is implemented in the MEMS/NEMS devices for fatigue and fracture characterization of nanomaterials. For designing the sensor part of this MEMS/NEMS device, a piezoelectric (PZ) beam was used. After designing the actuator and sensor parts of this MEMS/NEMS device, which is called PW–PZ device, the dynamic response of the PW–PZ device is fully investigated. Furthermore, the effects of all important physical parameters on the dynamics response of the PW–PZ device were studied and discussed. Considering the effects of the nanomaterial sample showed an initial design of this actuator and sensor can be used for a broad range of nanomaterial samples regardless of their stiffness or material. This PW–PZ device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterial samples as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal R, Peng B, Espinosa HD (2009) Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett 9(12):4177–4183

    Article  Google Scholar 

  • Bao W, Su Z, Zheng C, Ning J, Xu S (2016) Carrier localization effects in InGaN/GaN multiple-quantum-wells LED nanowires: luminescence quantum efficiency improvement and “negative” thermal activation energy. Sci Rep 6:34545

    Article  Google Scholar 

  • Fan Z, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC et al (2009) Toward the development of printable nanowire electronics and sensors. Adv Mater 21(37):3730–3743

    Article  Google Scholar 

  • Farsad E, Abbasi SP, Goodarzi A, Zabihi MS (2011) Experimental parametric investigation of temperature effects on 60W-QCW diode laser. World Acad Sci Eng Technol 59:1190–1196

    Google Scholar 

  • Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9(10):768–779

    Article  Google Scholar 

  • Goldberger J, He R, Zhang Y, Lee S (2003) Single-crystal gallium nitride nanotubes. Nature 422(6932):599

    Article  Google Scholar 

  • Hong YJ, Lee CH, Yoon A, Kim M, Seong HK, Chung HJ et al (2011) Visible-color-tunable light-emitting diodes. Adv Mater 23(29):3284–3288

    Article  Google Scholar 

  • Hosseinian E, Pierron ON (2013) Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5(24):12532–12541

    Article  Google Scholar 

  • Huang JY, Zheng H, Mao SX, Li Q, Wang GT (2011) In situ nanomechanics of GaN nanowires. Nano Lett 11(4):1618–1622

    Article  Google Scholar 

  • Kahn H, Ballarini R, Mullen RL, Heuer AH (1999) Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 455, no 1990. The Royal Society, pp 3807–3823

  • Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7(11):728–732

    Article  Google Scholar 

  • Kong NA, Ha DS, Erturk A, Inman DJ (2010) Resistive impedance matching circuit for piezoelectric energy harvesting. J Intell Mater Syst Struct 21(13):1293–1302

    Article  Google Scholar 

  • Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6(3):320

    Article  Google Scholar 

  • Li C, Wright JB, Liu S, Lu P, Figiel JJ, Leung B et al (2017a) Nonpolar InGaN/GaN core-shell single nanowire lasers. Nano Lett 17(2):1049–1055

    Article  Google Scholar 

  • Li W, Xu H, Zhai T, Yu H, Chen Z, Qiu Z et al (2017b) Enhanced triethylamine sensing properties by designing Au@ SnO2/MoS2 nanostructure directly on alumina tubes. Sens Actuators B Chem 83:209–215

    Google Scholar 

  • Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y et al (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7(11):749–756

    Article  Google Scholar 

  • Lu Y, Song J, Huang JY, Lou J (2011) Fracture of Sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21(20):3982–3989

    Article  Google Scholar 

  • Maloney JM, Schreiber DS, DeVoe DL (2003) Large-force electrothermal linear micromotors. J Micromech Microeng 14(2):226

    Article  Google Scholar 

  • McAlpine MC, Friedman RS, Jin S, Lin KH, Wang WU, Lieber CM (2003) High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett 3(11):1531–1535

    Article  Google Scholar 

  • Mousavi AK, Leseman ZC (2012) Basic MEMS actuators. In: Encyclopedia of nanotechnology. Springer, Amsterdam, pp 173–185

  • Patil VL, Vanalakar SA, Patil PS, Kim JH (2017) Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens Actuators B Chem 239:1185–1193

    Article  Google Scholar 

  • Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104

    Article  Google Scholar 

  • Pisano AP, Cho YH (1990) Mechanical design issues in laterally-driven microstructures. Sens Actuators A 23(1–3):1060–1064

    Article  Google Scholar 

  • Que L, Park JS, Gianchandani YB (1999) Bent-beam electro-thermal actuators for high force applications. In: Twelfth IEEE international conference on micro electro mechanical systems, MEMS. IEEE, pp 31–36

  • Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators A 145:380–386

    Article  Google Scholar 

  • Richter H, Misawa EA, Lucca DA, Lu H (2001) Modeling nonlinear behavior in a piezoelectric actuator. Precision Eng 25(2):128–137

    Article  Google Scholar 

  • Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678

    Article  Google Scholar 

  • Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246

    Article  Google Scholar 

  • Wang QM, Zhang Q, Xu B, Liu R, Cross LE (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J Appl Phys 86(6):3352–3360

    Article  Google Scholar 

  • Zamani Kouhpanji MR (2017a) Investigating the classical and non-classical mechanical properties of GaN nanowires. MS thesis, University of New Mexico. http://digitalrepository.unm.edu/ece_etds/354

  • Zamani Kouhpanji MR (2017b) Designing and analyzing sensor and actuator of a nano/micro-system for fatigue and fracture characterization of nanomaterials. World Academy of Science, Engineering and Technology, International Science Index 130. Int J Mech Aerosp Ind Mechatron Manuf Eng 11(10):1677–1685

    Google Scholar 

  • Zamani Kouhpanji MR (2017c) Studying the dynamical response of nano-microelectromechanical devices for nanomechanical testing of nanostructures. World Academy of Science, Engineering and Technology, International Science Index 131. Int J Mech Aerosp Ind Mechatron Manuf Eng 11(11):1786–1792

    Google Scholar 

  • Zamani Kouhpanji MR, Jafaraghaei U (2017) A semianalytical approach for determining the nonclassical mechanical properties of materials, arXiv preprint. arXiv:1706.06559

  • Zamani Kouhpanji MR, Behzadirad M, Busani T (2017) Classical continuum theory limits to determine the size-dependency of mechanical properties of GaN NWs. J Appl Phys 122(22):225113

    Article  Google Scholar 

  • Zamiri M, Anwar F, Klein BA, Rasoulof A, Dawson NM, Schuler-Sandy T, Krishna S (2016) Antimonide-based membranes synthesis integration and strain engineering. Proc Natl Acad Sci 2016:15645

    Google Scholar 

  • Zhang Y, Wang F, Zang P, Wang J, Mao S, Zhang X, Lu J (2014) In-situ observation of crack propagation through the nucleation of nanoscale voids in ultra-thin, freestanding Ag films. Mater Sci Eng, A 618:614–620

    Article  Google Scholar 

  • Zhu Y, Chang TH (2015) A review of microelectromechanical systems for nanoscale mechanical characterization. J Micromech Microeng 25(9):093001

    Article  Google Scholar 

  • Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Zamani Kouhpanji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani Kouhpanji, M.R. Paired-wire carrying current actuators and piezoelectric beam sensors for microelectromechanical systems. Microsyst Technol 24, 2401–2408 (2018). https://doi.org/10.1007/s00542-018-3722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3722-8

Navigation