Skip to main content
Log in

Simple fabrication of high focal number micro-lenses based on a microfluid pulse jetting method

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a simple and rapid high focal number (F#) micro-lens (ML) fabrication method using a simple microfluid pulse jetting technology. The simulation of the microfluid pulse jetting is firstly studied to prove that the new jetting method have the potential for jetting the UV polymer with a low surface tension coefficient stably. As the high F# of the ML is ascribed to the low contact angle of the ML on the substrate, a simple surface treatment of the substrate is adopted to obtain a small contact angle of the UV polymer on the substrate. Based on this method, the spherical ML and cylindrical ML with a F# as high as 11.5 have been successfully fabricated. The fabricated high F# ML is characterized through simulating the modulation transfer function curve, wavefront aberration, and point spread function (PSF) and measuring the PSF and imaging effect, and the simulation and measurement results indicate that the diffraction limit optical performance of the high F# ML can be achieved and the clear images can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahmed R, Yetisen AK, Butt H (2017) High numerical aperture hexagonal stacked ring-based bidirectional flexible polymer microlens array. ACS Nano 11(3):3155–3165

    Article  Google Scholar 

  • Ares M, Royo S, Caum J (2007) Shack-Hartmann sensor based on a cylindrical microlens array. Opt Lett 32(7):769–771

    Article  Google Scholar 

  • Bi X, Li W (2015) Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. J Mater Chem C 3(22):5825–5834

    Article  Google Scholar 

  • Bian R, Xiong Y, Chen X et al (2015) Ultralong focal length microlens array fabricated based on SU-8 photoresist. Appl Opt 54(16):5088–5093

    Article  Google Scholar 

  • Chang CY, Tsai MH (2015) Development of a continuous roll-to-roll processing system for mass production of plastic optical film. J Micromech Microeng 25(12):125014

    Article  Google Scholar 

  • Chang CY, Yu CH (2015) A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays. J Micromech Microeng 25(2):025010

    Article  MathSciNet  Google Scholar 

  • Chen L, Kirchberg S, Jiang BY et al (2014) Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes. Appl Opt 53(31):7369–7380

    Article  Google Scholar 

  • Choi HK, Ahsan MS, Yoo D et al (2015) Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique. Opt Laser Technol 75:63–70

    Article  Google Scholar 

  • Cox WR, Hayes DJ, Chen T et al (1995) Fabrication of micro-optics by microjet printing. Micro-Opt Micromech Laser Scanning Shap Int Soc Opt Photon 2383:110–116

    Google Scholar 

  • Cox WR, Chen T, Guan C et al (1998) Micro-jet printing of refractive microlenses. In: Proc. OSA Diffract. Opt. Micro-opt. Topical Mtg

  • Deng Z, Chen F, Yang Q et al (2012) A facile method to fabricate close-packed concave microlens array on cylindrical glass. J Micromech Microeng 22(11):115026

    Article  Google Scholar 

  • Deng Z, Yang Q, Chen F et al (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40(9):1928–1931

    Article  Google Scholar 

  • Dong BZ, Liu J, Gu BY et al (2001) Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution. JOSA A 18(7):1465–1470

    Article  Google Scholar 

  • Fakhfouri V, Cantale N, Mermoud G et al (2008) Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses. In: IEEE 21st International conference on micro electro mechanical systems, MEMS 2008. IEEE, pp 407–410

  • Gex F, Horville D, Lelievre G et al (1996) Improvement of a manufacturing technique for long focal length microlens arrays. Pure Appl Opt 5(6):863

    Article  Google Scholar 

  • Hsieh HT, Su GDJ (2010) A novel boundary-confined method for high numerical aperture microlens array fabrication. J Micromech Microeng 20(3):035023

    Article  Google Scholar 

  • Hsieh HT, Lin V, Hsieh JL et al (2011) Design and fabrication of long focal length microlens arrays. Opt Commun 284(21):5225–5230

    Article  Google Scholar 

  • Jacot-Descombes L, Gullo MR, Cadarso VJ et al (2012) Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. J Micromech Microeng 22(7):074012

    Article  Google Scholar 

  • Jeong KH, Lee LP (2002) A new method of increasing numerical aperture of microlens for biophotonic MEMS. In: Second annual international IEEE-EMB special topic conference on microtechnologies in medicine and biology. IEEE, pp 380–383

  • Jucius D, Grigaliūnas V, Lazauskas A et al (2017) Effect of fused silica surface wettability on thermal reflow of polymer microlens arrays. Microsyst Technol 23(6):2193–2206

    Article  Google Scholar 

  • Kim JY, Brauer NB, Fakhfouri V et al (2011) Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique. Opt Mater Express 1(2):259–269

    Article  Google Scholar 

  • Kim JY, Pfeiffer K, Voigt A et al (2012) Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J Mater Chem 22(7):3053–3058

    Article  Google Scholar 

  • Kong LB, Cheung CF (2012) Modeling and characterization of surface generation in fast tool servo machining of microlens arrays. Comput Ind Eng 63(4):957–970

    Article  Google Scholar 

  • Kuo JN, Hsieh CC, Yang SY et al (2007) An SU-8 microlens array fabricated by soft replica molding for cell counting applications. J Micromech Microeng 17(4):693

    Article  Google Scholar 

  • Li ZA (2014) Digital droplet micro-jetting prepared microfluidic chip technology and its experimental research. Nanjing University of Science and Technology

  • Li X, Ding Y, Shao J et al (2012) Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater 24(23):165

    Google Scholar 

  • Li P, Pei J, Pan L et al (2014) Fabrication method of low f-number microlens arrays by using surface coating and epoxy dispensing technology. J Micro/Nanolithogr MEMS MOEMS 13(2):023004

    Article  Google Scholar 

  • Lin V, Wei HC, Hsieh HT et al (2011) An optical wavefront sensor based on a double layer microlens array. Sensors 11(11):10293–10307

    Article  Google Scholar 

  • Lu DX, Zhang YL, Han DD et al (2015) Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. J Mater Chem C 3(8):1751–1756

    Article  Google Scholar 

  • Luo Z, Duan J, Guo C (2017) Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt Lett 42(12):2358–2361

    Article  Google Scholar 

  • Ottevaere H, Cox R, Herzig HP et al (2006) Comparing glass and plastic refractive microlenses fabricated with different technologies. J Opt A: Pure Appl Opt 8(7):S407

    Article  Google Scholar 

  • Pericet-Camara R, Best A, Nett SK et al (2007) Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device. Opt Express 15(15):9877–9882

    Article  Google Scholar 

  • Poon PCH, Commander LG, Selviah DR et al (1999) Extension of the useful focal length range of microlenses by oil immersion. J Opt A 1(2):133

    Article  Google Scholar 

  • Popovic ZD, Sprague RA, Connell GAN (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284

    Article  Google Scholar 

  • Sutanto E, Tan Y, Onses MS et al (2014) Electrohydrodynamic jet printing of micro-optical devices. Manuf Lett 2(1):4–7

    Article  Google Scholar 

  • Vespini V, Coppola S, Todino M et al (2016) Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab Chip 16(2):326–333

    Article  Google Scholar 

  • Voigt A, Ostrzinski U, Pfeiffer K et al (2011) New inks for the direct drop-on-demand fabrication of polymer lenses. Microelectron Eng 88(8):2174–2179

    Article  Google Scholar 

  • Wang M, Yu W, Wang T et al (2015) A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number. RSC Adv 5(44):35311–35316

    Article  Google Scholar 

  • Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low F-number. J Comp Physiol A 168(4):499–512

    Article  Google Scholar 

  • Xie D, Zhang H, Shu X et al (2012) Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology. Opt Express 20(14):15186–15195

    Article  Google Scholar 

  • Xie D, Chang X, Shu X et al (2015) Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology. Opt Express 23(4):5154–5166

    Article  Google Scholar 

  • Xie D, Chang X, Shu X et al (2016) Replication of thermoplastic polymer spherical lens array using microforged molding technique. Opt Express 24(26):30264–30274

    Article  Google Scholar 

  • Xing J, Rong W, Sun D et al (2016) Extrusion printing for fabrication of spherical and cylindrical microlens arrays. Appl Opt 55(25):6947–6952

    Article  Google Scholar 

  • Ye JS, Mei GA, Zheng XH et al (2012) Long-focal-depth cylindrical microlens with flat axial intensity distributions. J Modern Opt 59(1):90–94

    Article  Google Scholar 

  • Yoon GY, Jitsuno T, Nakatsuka M et al (1996) Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Appl Opt 35(1):188–192

    Article  Google Scholar 

  • Zhu X, Zhu L, Chen H et al (2015a) Fabrication of multi-scale micro-lens arrays on hydrophobic surfaces using a drop-on-demand droplet generator. Opt Laser Technol 66:156–165

    Article  Google Scholar 

  • Zhu X, Zhu L, Chen H et al (2015b) Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Opt Laser Technol 68:23–27

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51705271), Shandong Provincial Natural Science Foundation, China (No. ZR2017QEE018), and A Project of Shandong Province Higher Educational Science and Technology Program (J17KA032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 9703 kb)

Supplementary material 2 (MP4 4028 kb)

Supplementary material 3 (MP4 4187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Lan, H., Yang, J. et al. Simple fabrication of high focal number micro-lenses based on a microfluid pulse jetting method. Microsyst Technol 24, 2789–2802 (2018). https://doi.org/10.1007/s00542-018-3721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3721-9

Navigation