Skip to main content
Log in

Size-dependent dynamic instability of double-clamped nanobeams under dispersion forces in the presence of thermal stress effects

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The objective of present study is to investigate the small-scale effects on the dynamic instability of nanoswitches subjected to electrostatic and intermolecular forces in the presence of thermal stress effects. To this end, Eringen’s nonlocal elasticity theory is applied along with the Euler–Bernoulli beam model and the equilibrium equation is derived by considering thermal stress effects. The dynamic governing equation, which is extremely nonlinear due to the intermolecular and electrostatic attraction forces and also thermal effects, is solved numerically by reduced order method. The accuracy of the solution is examined by comparing the obtained results with the existing numerical and analytical models. Finally, a comprehensive study is carried out to determine the influence of nonlocal parameters on the dynamic pull-in instability characteristics of double clamped nanobeam in the presence of thermal and dispersion forces. It is found that the pull-in parameters are conspicuously changed in accordance with the variations of nonlocal parameter as well as temperature changes by considering molecular attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadian MT, Pasharavesh A, Fallah A (2011) Application of nonlocal theory in dynamic pull-In analysis of electrostatically actuated micro and nano beams. In: Proceedings of the ASME 2011 international design engineering technical conferences and computers and information in engineering conference IDETC/CIE 2011, August 28–31, USA

  • Alsaleem FM, Younis MI, Ruzziconi L (2010) An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J Microelectromech Syst 19:794–806

    Article  Google Scholar 

  • Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51:303–313

    Article  Google Scholar 

  • Asghari M, Kahrobaiyan MH, Rahaeifard M, Ahmadian MT (2011) Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch Appl Mech 81:863–874

    Article  MATH  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2006) Electromechanical model of electrically actuated narrowmicrobeams. J Microelectromechan Syst 15(5):1175–1189

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008a) Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors 8:1048–1069

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008b) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309:600–612

    Article  Google Scholar 

  • Bordag M, Mohideen U, Mostepanenko VM (2001) New developments in the Casimir effect. Phys Rep 353:1–205

    Article  MathSciNet  MATH  Google Scholar 

  • Caruntu DI, Martinez I, Knecht MW (2013) Reduced order model analysis of frequency response of alternating current near half natural frequency electrostatically actuated MEMS cantilevers. J Comput Nonlinear Dyn 8:031011

    Article  Google Scholar 

  • Chao PCP, Chiu CW, Liu TH (2008) DC dynamic pull-in predictions for a generalized clamped–lamped micro-beam based on a continuous model and bifurcation analysis. J Micromech Microeng 18:1–14

    Google Scholar 

  • Chaterjee S, Pohit G (2009) A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J Sound Vib 322:969–986

    Article  Google Scholar 

  • Craighead HG (2000) Nanoelectromechanicalsystems. Science 290:1532–1535

    Article  Google Scholar 

  • Das K, Batra RC (2009) Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches. Smart Mater Struct 18:115008

    Article  Google Scholar 

  • Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Vibration analysis of Euler-Bernoulli nanobeams by using finite element method. Appl Math Model 37:4787–4797

    Article  MathSciNet  Google Scholar 

  • Eringen AC (1972) Nonlocal polar elastic continuam. Int J Eng Sci 10:1–16

    Article  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Evoy S, Carr DW, Sekaric L, Olkhovets A, Parpia JM, Craighead HG (1999) Nano fabrication and electrostatic operation of single-crystal silicon paddle oscillations. J Appl Phys Rev B 69:165410

    Google Scholar 

  • He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262

    Article  MathSciNet  MATH  Google Scholar 

  • Hosseini-Hashemi S, Nazemnezhad R, Rokni H (2015) Nonlocal nonlinear free vibration of nanobeams with surface effects. Eur J Mech A Solids 52:44–53

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JM, Liew KM, Wong CH, Rajendran S, Tan MJ, Liu AQ (2001) Mechanical design and optimization of capacitive micromachined switch. Sens Actuators, A 93(3):273–285

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces: with applications to colloidal and biological systems (colloid science). Academic Press, London

    Google Scholar 

  • Klimchitskaya GL, Mohideen U, Mostepanenko VM (2000) Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys Rev A 61:062107

    Article  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Lamoreaux SK (2005) The Casimir force: background, experiments and applications. Rep Prog Phys 68:201–236

    Article  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a plat form for chemical and biological sensors. Rev Sci Instrum 75:2229–2253

    Article  Google Scholar 

  • Li C, Lim CW, Yu JL (2011a) Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater Struct 20:015023

    Article  Google Scholar 

  • Li C, Lim CW, Yu JL, Zeng QC (2011b) Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force. Int J Struct Stab Dyn 11(2):257–271

    Article  MathSciNet  MATH  Google Scholar 

  • Lifshitz EM (1956) The theory of molecular attractive forces between solids. Soviet Phys JETP 2:73–83

    Google Scholar 

  • Moghimi Zand M, Ahmadian MT (2010) Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces, Part C. J Mech Eng Sci 224(9):2037–2047

    Article  Google Scholar 

  • MogimiZand M, Ahmadian MT (2009) Application of homotopy analysis method in studying dynamic pull-in Instability of microsystems. J Mech Res Commun 36:851–858

    Article  MATH  Google Scholar 

  • Mousavi T, Bornassi S, Haddadpour H (2013) The effect of small scale on the pull-in instability of nano-switches using DQM. Int J Solids Struct 50:1193–1202

    Article  Google Scholar 

  • Nakhaie Jazar G (2006) Mathematical modeling and simulation of thermal effects in flexural microcantilever resonator dynamics. J Vib Control 12(2):139–163

    Article  MATH  Google Scholar 

  • Narendar S, Gopalakrishnan S (2012) Nonlocal continuum mechanics formulation for axial, flexural, shear and contraction coupled wave propagation in single walled carbon nanotubes. Lat Am J Solids Struct 9(4):497–513

    Article  Google Scholar 

  • Nathanson HC, Newell WE, Wickstrom RA, Davis JR (1967) The resonant gate transistor. IEEE Trans Electron 14(3):117–133

    Article  Google Scholar 

  • Peddieson J, Buchanan GR, Mc Nitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  • Rahaeifard M, Ahmadian MT, Firoozbakhsh K (2014) Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage. Proc IMechE Part C J Mech Eng Sci 228(5):896–906

    Article  Google Scholar 

  • Rajabi F, Ramezani S (2013) A nonlinear microbeam model based on the strain gradient elasticity theory. Acta Mech Solida Sin 26(1):21–34

    Article  MATH  Google Scholar 

  • Rasekh M, Khadem SE, Tatari M (2010) Nonlinear behaviour of electrostatically actuated carbon nanotubebased devices. J Phys D Appl Phys 43:315301

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  • Reddy JN (2010) Nonlocal nonlinear formulations of beams for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48:1507–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy JN, El-Borgi S (2014) Eringen’s nonlocal theories of beams accounting for moderate rotations. Int J Eng Sci 2:159–177

    Article  MathSciNet  Google Scholar 

  • Rocha LA, Cretu E, Wolffenbuttel RF (2004) Compensation of temperature effects on the pull-in voltage of microstructures. Sens Actuators, A 115:351–356

    Article  Google Scholar 

  • Roque CMC, Ferreira AJM, Reddy JN (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49:976–984

    Article  MATH  Google Scholar 

  • Sedighi HM (2014) Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut 95:111–123

    Article  Google Scholar 

  • Simsek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E 43(1):182–191

    Article  Google Scholar 

  • Song F, Huang GL, Park HS, Liu XN (2011) A continuum model for the mechanical behaviour of nanowires including surface and surface-induced initial stresses. Int J Solids Struct 48(14–15):2154–2163

    Article  Google Scholar 

  • Taghavi N, Nahvi H (2013) Pull-in instability of cantilever and fixed–fixed nano-switches. Eur J Mech A Solids 41:123–133

    Article  MathSciNet  Google Scholar 

  • Tavakolian F, Farrokhabadi A, Mirzaei M (2015) Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory. Microsyst Technol. doi:10.1007/s00542-015-2785-z

    Google Scholar 

  • Thai HT (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  Google Scholar 

  • Yang J, Hu YJ, Kitipornchai S (2012) Electro-dynamic behavior of an electrically actuated micro-beam: effects of initial curvature and nonlinear deformation. J Comput Struct 96–97:25–33

    Article  Google Scholar 

  • Zhang YQ, Liu X, Zhao JH (2008) Influence of temperature change on column buckling of multiwalled carbon nanotubes. Phys Lett A 372:1676

    Article  MATH  Google Scholar 

  • Zhu Y, Espinosa HD (2004) Effect of temperature on capacitive RF MEMS switch performance-a coupled-field analysis. J Micromech Microeng 14:1270–1279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Farrokhabadi.

Appendix

Appendix

1.1 The governing equation of van der Waals attraction

$$\begin{aligned} & {\text{u}}^{\prime\prime}_{\text{n}} + \upomega_{\text{n}}^{2} {\text{u}}_{\text{n}} - 5(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\,\upomega_{1}^{2} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 10(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} \hfill \\ & \quad - 10(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + 5(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} - (1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{6} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} \hfill \\ & \quad - 5{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 10{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - 10{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + 5{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} - {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} - \upmu {\text{u}}^{\prime\prime}_{1} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1} } {\text{dx}} \hfill \\ & \quad + 5\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} - 10\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} + 10\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} - 5\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + \upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} \hfill \\ & \quad + \upmu {\text{V}}^{2} (6 + 2\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{2} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1} } {\text{dx}} - \upmu {\text{V}}^{2} (6 + 4\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{3} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{2} } {\text{dx}} + \left[ {\upmu {\text{V}}^{2} (2 + \frac{{0.65{\text{d}}}}{\text{b}}) - {\text{N}}_{\text{t}}^{*} } \right]{\text{u}}_{1} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\ & \quad + \left[ {\upmu {\text{V}}^{2} (4 + 3\frac{{0.65{\text{d}}}}{\text{b}}) - 5({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} + \left[ {\upmu {\text{V}}^{2} (2 + 3\frac{{0.65{\text{d}}}}{\text{b}}) - 10({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} \hfill \\ & \quad + 2\upmu {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\text{b}}{\text{u}}_{1}^{4} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{3} } {\text{dx}} - \left[ {\upmu {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\text{b}} - 10({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} + 5({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ){\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} \hfill \\ & \quad + ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ){\text{u}}_{1}^{6} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} + 12\upmu \uplambda_{3} {\text{u}}_{1}^{2} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1} } {\text{dx}} + 3\upmu \uplambda_{3} {\text{u}}_{1} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1} } {\text{dx}} - 3\upmu \uplambda_{3} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\ & \quad - {\text{V}}^{2} (1 + \frac{{0.65{\text{d}}}}{\text{b}})\int_{0}^{1} {{\text{q}}_{1} } {\text{dx}} + {\text{V}}^{2} (3 + 4\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - {\text{V}}^{2} (3 + 6\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} \hfill \\ & \quad + {\text{V}}^{2} (1 + 4\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\text{b}}{\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} - \uplambda_{3} \int_{0}^{1} {{\text{q}}_{1} } {\text{dx}} + 2\uplambda_{3} {\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - \uplambda_{3} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} = 0. \hfill \\ \end{aligned}$$
(26)

1.2 The governing equation of Casimir attraction

$$\begin{aligned} & {\text{u}}_{\text{n}}^{\prime } + \upomega_{\text{n}}^{2} {\text{u}}_{\text{n}} - 6(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\,\upomega_{1}^{2} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 15(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} \hfill \\ & \quad - 20(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + 15(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} - 6(1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{6} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} \hfill \\ & \quad + (1 + \upmu ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ))\upomega_{1}^{2} {\text{u}}_{1}^{7} \int_{0}^{1} {{\text{q}}_{1}^{8} } {\text{dx}} - 6{\text{u}}_{1}^{\prime } {\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 15{\text{u}}_{1}^{\prime } {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - 20{\text{u}}_{1}^{\prime } {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + 15{\text{u}}_{1}^{\prime } {\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} \hfill \\ & \quad - 6{\text{u}}_{1}^{\prime } {\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} + {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{6} \int_{0}^{1} {{\text{q}}_{1}^{8} } {\text{dx}} - \upmu {\text{u}}_{1}^{\prime } \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1} } {\text{dx}} + 6\upmu {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{{}} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} - 15\upmu {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} + 20\upmu {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} \hfill \\ & \quad - 15\upmu {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + 6\upmu {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} - \upmu {\text{u}}_{1}^{\prime } {\text{u}}_{1}^{6} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{7} } {\text{dx}} + \upmu {\text{V}}^{2} (6 + 2\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{2} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{{}} } {\text{dx}} \hfill \\ & \quad - \upmu {\text{V}}^{2} (12 + 6\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{3} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{2} } {\text{dx}} + \upmu {\text{V}}^{2} (6 + 6\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{4} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{3} } {\text{dx}} \hfill \\ & \quad + \left[ {\upmu {\text{V}}^{2} (12 + \frac{{0.65{\text{d}}}}{\text{b}}) - ({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{{}} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} - \left[ {\upmu {\text{V}}^{2} (36 + 4\frac{{0.65{\text{d}}}}{\text{b}}) - 6({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\ & \quad + \left[ {\upmu {\text{V}}^{2} (6 + 6\frac{{0.65{\text{d}}}}{\text{b}}) - 15({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} - \left[ {\upmu {\text{V}}^{2} (12 + 4\frac{{0.65{\text{d}}}}{\text{b}}) - 20({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )} \right]{\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} \hfill \\ & \quad - 2\upmu {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\text{b}}{\text{u}}_{1}^{5} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{4} } {\text{dx}} + (\upmu {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\text{b}} - 15({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} )){\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + 6({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ){\text{u}}_{1}^{6} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} \hfill \\ & \quad - 6({\text{N}}_{\text{t}}^{*} + {\text{N}}_{\text{e}}^{*} ){\text{u}}_{1}^{7} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{7} } {\text{dx}} + 20\upmu \uplambda_{4} {\text{u}}_{1}^{2} \int_{0}^{1} {\dot{\text{q}}_{1}^{2} {\text{q}}_{1}^{{}} } {\text{dx}} + 4\upmu \uplambda_{4} {\text{u}}_{1}^{{}} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{{}} } {\text{dx}} - 4\upmu \uplambda_{4} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{\text{q}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\ & \quad - {\text{V}}^{2} (1 + \frac{{0.65{\text{d}}}}{\text{b}})\int_{0}^{1} {{\text{q}}_{1}^{{}} } {\text{dx}} + {\text{V}}^{2} (4 + 5\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{{}} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - {\text{V}}^{2} (6 + 10\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} \hfill \\ & \quad + {\text{V}}^{2} (4 + 10\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - {\text{V}}^{2} (1 + 5\frac{{0.65{\text{d}}}}{\text{b}}){\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\text{b}}{\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} \hfill \\ & \quad - \uplambda_{4} \int_{0}^{1} {{\text{q}}_{1}^{{}} } {\text{dx}} + 2\uplambda_{4} {\text{u}}_{1}^{{}} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - \uplambda_{4} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} = 0. \hfill \\ \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakolian, F., Farrokhabadi, A. Size-dependent dynamic instability of double-clamped nanobeams under dispersion forces in the presence of thermal stress effects. Microsyst Technol 23, 3685–3699 (2017). https://doi.org/10.1007/s00542-016-3253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3253-0

Keywords

Navigation