Skip to main content
Log in

Wafer-level vacuum-encapsulated rate gyroscope with high quality factor in a commercial MEMS process

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We report the design and fabrication of a rate gyroscope sensor that is characterized by a high quality factor (52,300), unmatched resonance mode and low noise performance. The gyroscope dimensions are 1800 µm × 850 µm with 30 µm device thickness. The gyroscope comprises of a symmetrical resonator for the drive mode oscillation and uses differential capacitance measurement for inertial sensing. The gyroscope is fabricated using MEMS Integrated Design for Inertial Sensors process, which is a new microfabrication process developed by Teledyne DALSA Semiconductor Inc. This new microfabrication technology offers wafer-level encapsulation under high vacuum pressure of 10 mTorr and includes Through Silicon Vias that allows flip-chip bonding with an integrated circuit for signal detection and processing. The fabricated gyroscope was tested and it exhibited a sensitivity of 0.8 fF/°/s with excellent linearity over a wide input angular velocity range of ±1000°/s and a high rate resolution of 0.71°/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Acar C, Shkel A (2009) MEMS vibratory gyroscopes: structural Approaches to improve robustness, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Acar C, Schofield AR, Trusov AA, Costlow LE, Shkel AM (2009) Environmentally robust MEMS vibratory gyroscopes for automotive applications. IEEE Sens J 9:1895–1906

    Article  Google Scholar 

  • Ahn CH, Nitzan S, Ng EJ, Hong VA, Yang Y, Kimbrell T et al (2014) Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump. Appl Phys Lett 105:243504

    Article  Google Scholar 

  • Ayazi F (2011) Multi-DOF inertial MEMS: from gaming to dead reckoning. In: Solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011 16th International pp 2805–2808

  • Bogue R (2007) Resonating gyroscopes: the next big challenge for MEMS technology. Sens Rev 27:197–199

    Article  Google Scholar 

  • Candler RN, Hopcroft MA, Kim B, Park WT, Melamud R, Agarwal M et al (2006) Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J Microelectromech Syst 15:1446–1456

    Article  Google Scholar 

  • Cho JY, Woo JK, Yan JL, Peterson RL, Najafi K (2014) Fused-silica micro birdbath resonator gyroscope (mu-BRG). J Microelectromech Syst 23:66–77

    Article  Google Scholar 

  • Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45:361–369

    Article  Google Scholar 

  • Collin J (2015) MEMS IMU carouseling for ground vehicles. IEEE Trans Veh Technol 64:2242–2251

    Article  Google Scholar 

  • Comi C, Corigliano A, Langfelder G, Longoni A, Tocchio A, Simoni B (2010) A resonant microaccelerometer with high sensitivity operating in an oscillating circuit. IEEE J Microelectromech Syst 19(5):1140–1152

    Article  Google Scholar 

  • Gooch R, Schimert T, McCardel W, Ritchey B, Gilmour D, Koziarz W (1999) Wafer-level vacuum packaging for MEMS. J Vac Sci Technol A Vac Surf Films 17:2295–2299

    Article  Google Scholar 

  • Guan J-P, Liu X-M (2010) Improved design and modeling of micromachined tuning fork gyroscope characterized by high quality factor. J Electron Sci Technol 8:280–286

    Google Scholar 

  • Guo ZS, Cheng FC, Li BY, Cao L, Lu C, Song K (2015) Research development of silicon MEMS gyroscopes: a review. Microsyst Technol Micro Nanosyst Inform Stor Process Syst 21:2053–2066

    Google Scholar 

  • Jeong Y, Serrano DE, Keesara V, Sung WK, Ayazi F (2013) Wafer-level vacuum-packaged tri-axial accelerometer with nano airgaps. In: 26th IEEE international conference on micro electro mechanical systems (MEMS 2013), pp 33–36

  • Johari H, Ayazi F (2007) High-frequency capacitive disk gyroscopes in (100) and (111) silicon. In: Proceedings of the IEEE twentieth annual international conference on micro electro mechanical systems 1–2: 238–241

  • Kempe V (2011) Inertial MEMS: principles and practice, 1st edn. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  • Lawrence A (1998) Modern inertial technology: navigation, guidance, and control, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lee B, Seok S, Chun K (2003) A study on wafer level vacuum packaging for MEMS devices. J Micromech Microeng 13:663–669

    Article  Google Scholar 

  • Lee SH, Mitchell J, Welch W, Lee S, Najafi K (2010) Wafer-level vacuum/hermetic packaging technologies for MEMS. Reliab Packag Test Charact MEMS/Moems Nanodevices Ix 7592

  • Mansoor H, Zeng H, Chen K, Yu Y, Zhao J, Chiao M (2011) Vertical optical sectioning using a magnetically driven confocal microscanner aimed for in vivo clinical imaging. Opt Expr 19:25161–25172

    Article  Google Scholar 

  • Merdassi A, Yang P, Chodavarapu VP (2015a) A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process. Sensors 15:7349–7359

    Article  Google Scholar 

  • Merdassi A, Kezzo MN, Xereas G, Chodavarapu VP (2015b) Wafer level vacuum encapsulated tri-axial accelerometer with low cross-axis sensitivity in a commercial MEMS process. Sens Actuators A Phys 236:25–37

    Article  Google Scholar 

  • Mizuno J, Nottmeyer K, Kobayashi T, Minami K, Esashi M (1997) Silicon bulk micromachined accelerometer with simultaneous linear and angular sensitivity. IEEE International Conference on Solid State Sensors and Actuators 2:1197–1200

    Google Scholar 

  • Pai P, Chowdhury FK, Mastrangelo CH, Tabib-Azar M (2012) MEMS-based hemispherical resonator gyroscopes. In: 2012 IEEE sensors proceedings, pp 170–173

  • Premachandran CS, Chong SC, Liw S, Nagarajan R (2009) Fabrication and testing of a wafer-level vacuum package for MEMS device. IEEE Trans Adv Packag 32:486–490

    Article  Google Scholar 

  • Prikhodko IP, Zotov SA, Trusov AA, Shkel AM (2011) Sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor. In: Solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011 16th International, pp 2809–2812

  • Prikhodko IP, Trusov AA, Shkel AM (2012) North-finding with 0.004 radian precision using a silicon MEMS quadruple mass gyroscope with Q-factor of 1 million. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS)

  • Prikhodko IP, Zotov SA, Trusov AA, Shkel AM (2013) What is MEMS gyrocompassing? Comparative analysis of maytagging and carouseling. J Microelectromech Syst 22:1257–1266

    Article  Google Scholar 

  • Rozelle DM (2009) The hemispherical resonator gyro: from wineglass to the planets. In: 19th AAS/AIAA space flight mechanics meeting, Savannah, pp 1157–1178

  • Sharma M, Sarraf EH, Baskaran R, Cretu E (2012) Parametric resonance: amplification and damping in MEMS gyroscopes. Sens Actuators A Phys 177:79–86

    Article  Google Scholar 

  • Sokolovic V, Dikic G, Markovic G, Stancic R, Lukic N (2015) INS/GPS navigation system based on MEMS technologies. Stroj Vestn J Mech Eng 61:448–458

    Article  Google Scholar 

  • Tan C-W, Park S, Mostov K, Varaiya P (2001) Design of gyroscope-free navigation systems. In: Proceedings IEEE intelligent transportation systems. Oakland, CA, pp 286–291

    Google Scholar 

  • TDSI-Semiconductor (2016) MEMS integrated design for inertial sensors (MIDIS). http://www.teledynedalsa.com/semi/mems/applications/midis/

  • Torunbalci MM, Alper SE, Akin T (2014) Wafer level hermetic encapsulation of MEMS inertial sensors using SOI cap wafers with vertical feedthroughs. In: 2014 1st IEEE international symposium on inertial sensors and systems (Isiss 2014), pp 153–154

  • Torunbalci MM, Alper SE, Akin T (2015a) Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sens Actuators A Phys 224:169–176

    Article  Google Scholar 

  • Torunbalci MM, Alper SE, Akin T (2015b) Advanced MEMS process for wafer level hermetic encapsulation of MEMS devices using SOI cap wafers with vertical feedthroughs. J Microelectromech Syst 24:556–564

    Article  Google Scholar 

  • Torunbalci MM, Alper SE, Akin T (2015c) A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process. J Micromech Microeng 25:125030

    Article  Google Scholar 

  • Trusov AA, Atikyan G, Rozelle DM, Meyer AD, Zotov SA, Simon BR, et al. (2014) Flat is not dead: current and future performance of Si-MEMS quad mass gyro (QMG) system. In: 2014 Ieee/Ion position, location and navigation symposium—plans, pp 252–258

  • Xereas G, Chodavarapu VP (2015) Wafer-level vacuum-encapsulated lame mode resonator with f-Q product of 2.23 × 10(13) Hz. IEEE Electron Device Lett 36:1079–1081

    Article  Google Scholar 

  • Zeng HS, Zhao Y (2011) Sensing movement: microsensors for body motion measurement. Sensors 11:638–660

    Article  Google Scholar 

  • Zhang K, Jiang W, Li XX (2008) Wafer-level sandwiched packaging for high-yield fabrication of high-performance MEMS inertial sensors. In: MEMS 2008: 21st IEEE international conference on micro electro mechanical systems, technical digest, pp 814–817

Download references

Acknowledgements

We would like to acknowledge the financial support given by Natural Sciences and Engineering Research Council of Canada (NSERC) and University of Dayton. We would like to acknowledge the support of Canada Microelectronics Corporation for access to MIDIS process from TDSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsy P. Chodavarapu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merdassi, A., Kezzo, M.N. & Chodavarapu, V.P. Wafer-level vacuum-encapsulated rate gyroscope with high quality factor in a commercial MEMS process. Microsyst Technol 23, 3745–3756 (2017). https://doi.org/10.1007/s00542-016-3250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3250-3

Keywords

Navigation