Skip to main content

Inertial Sensors

  • Chapter
  • First Online:
Silicon Sensors and Actuators

Abstract

Inertial Sensors represent a very successful application field for MEMS technology, having evolved from the first pioneering works in the early 1980s to the current pervasion in consumer, automotive, and Industrial applications.

The main working principles and design considerations regarding MEMS accelerometers and gyroscopes are described in Sects. 13.2 and 13.3, with emphasis on the interaction between process parameters and product performances.

Section 13.4 describes ST Microelectronics THELMA technology for inertial MEMS, with a detailed analysis of process flow. THELMA is an acronym for “Thick Epitaxial Layer for Micro-gyroscopes and Accelerometers” since the MEMS structural layer for this technology is a thick polysilicon film. Specific challenges of Wafer Level Packaging and hermetic vacuum encapsulation through getter technology for inertial MEMS gyroscopes and inertial 6-axis modules are described in the second part of this section.

Specific flavors of THELMA technology aiming at performance improvement and die area shrinkage are described in the following part of Sect. 13.4, such as THELMA-60 with increased structural layer thickness to 60 micron in order to increase accelerometer performances, Smeraldo, and Via-First technologies to realize Through Silicon Vias (TSV) and ThELMA-PRO (where PRO stands for PROtective), which by the introduction of protective coating on the permanent silicon dioxide layer allows to shrink the device area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roylance, L. M., & Angeli, J. B. (1979, December). A batch-fabricated silicon accelerometer. IEE Transactions on Electron Devices, ED-26(12).

    Google Scholar 

  2. https://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/2044696ADXL50.pdf

  3. Vigna, B. (2011) Tri-axial MEMS gyroscopes and six degree-of-freedom motion sensors. In International electronic device meeting.

    Google Scholar 

  4. Edwards, C. (2009). MEMS: The second wave. E&T – Engineering and Technology. https://eandt.theiet.org/content/articles/2009/07/mems-the-second-wave/, Monday, July 6.

  5. https://investors.st.com/news-releases/news-release-details/stmicroelectronics-drives-gaming-revolution-nintendos-wiitm

  6. Lemkin, M., & Boser, B. E. (1996). A micromachined fully differential lateral accelerometer. In Proceedings of custom integrated circuits conference, San Diego, CA, USA, pp. 315–318.

    Google Scholar 

  7. Kempe, V. (2011). Inertial MEMS: Principles and practice. Cambridge University Press.

    Book  Google Scholar 

  8. Corigliano, A., Ardito, R., Comi, C., Frangi, A., Ghisi, A., & Mariani, S. (2018). Mechanics of microsystems. Wiley.

    Book  Google Scholar 

  9. 528–2019 – IEEE Standard for Inertial Sensor Terminology. https://standards.ieee.org/content/ieee-standards/en/standard/528-2019.html

  10. Lemkin, M. A., Boser, B. E., Auslander, D., & Smith, J. H. ( 1997). A 3-axis force balanced accelerometer using a single proof-mass. In Proceedings of international solid state sensors and actuators conference (Transducers ‘97), vol. 2, Chicago, IL, USA, pp. 1185–1188. https://doi.org/10.1109/SENSOR.1997.635417.

  11. Marra, C. R., Tocchio, A., Rizzini, F., & Langfelder, G. (Oct. 2018). Solving FSR versus offset-drift trade-offs with three-Axis time-switched FM MEMS accelerometer. Journal of Microelectromechanical Systems, 27(5), 790–799.

    Article  Google Scholar 

  12. Robust sensor Performances.

    Google Scholar 

  13. Shkel, A. M. (2006). Type I and type II micromachined vibratory gyroscopes. In Proceedings of the IEEE/ION position location navigation symposium, April 2006, pp. 586–593.

    Google Scholar 

  14. Meyer, A. D., Rozelle, D. M., Trusov, A. A., & Sakaida, D. K. (2018). milli-HRG inertial sensor assembly – A reality. In Proceedings of the IEEE/ION position location navigation symposium, April 2018.

    Google Scholar 

  15. Bernstein, J., Cho, S., King, A. T., Kourepenis, A., Maciel, P., & Weinberg, M. (1993). A micromachined comb-drive tuning fork rate gyroscope. In Proceedings of the MEMS ‘93, pp. 143–148.

    Google Scholar 

  16. Johari, H., & Ayazi, F. (2006). Capacitive bulk acoustic wave silicon disk gyroscopes. In Proceedings of the IEEE electron devices meeting, December 2006, pp. 1–4.

    Google Scholar 

  17. Ayazi, F., & Najafi, K. (1998). Design and fabrication of high-performance polysilicon vibrating ring gyroscope. In: IEEE MEMS, Heidelberg, Germany, pp. 621–626.

    Google Scholar 

  18. Prikhodko, I. P., Gregory, J. A., Clark, W. A., Geen, J. A., Judy, M. W., Ahn, C. H., & Kenny, T. W., Mode-matched MEMS Coriolis vibratory gyroscopes: Myth or reality?, In 2016 IEEE/ION Position Location and Navigation Symposium (PLANS), pp. 1–4.

    Google Scholar 

  19. Weinberg, M. S., & Kourepenis, A. (2006). Journal of Microelectromechanical Systems, 15(3), 479–491.

    Article  Google Scholar 

  20. Izadi, M., Braghin, F., Giannini, D., Milani, D., Resta, F., Brunetto, M. F., et al. (2018). A comprehensive model of beams’ anisoelasticity in MEMS gyroscopes, with focus on the effect of axial nonvertical etching. In 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).

    Google Scholar 

  21. IEEE Standard 1431–2004 (2004). IEEE standard specification format guide and test procedure for Coriolis Vibratory Gyros, IEEE Standard 1431–2004.

    Google Scholar 

  22. El-Sheimy, N., Hou, H., & Niu, X. (2008). Analysis and modeling of inertial sensors using Allan variance. IEEE Transactions on Instrumentation and Measurement, 57(1).

    Google Scholar 

  23. Facchinetti, S., Guerinoni, L., Falorni, L. G., Donadel, A., & Valzasina, C. (2017). Development of a complete model to evaluate the Zero Rate Level drift over temperature in MEMS Coriolis vibrating gyroscopes. In 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), March 2017, pp. 125–128.

    Google Scholar 

  24. Kline, M., Yeh, Y., Eminoglu, B., Najar, H., Daneman, M., Horsley, D., & Boser, B. (2013, January). Quadrature FM gyroscope. In 2013 IEEE 26th international conference on Micro Electro Mechanical Systems (MEMS), pp. 604–608.

    Google Scholar 

  25. Minotti, P., Dellea, S., Mussi, G., Bonfanti, A. G., Facchinetti, S., Tocchio, A., et al. High scale-factor stability frequency-modulated MEMS gyroscope: 3-Axis sensor and integrated electronics design. IEEE Transactions on Industrial Electronics, 65(6), 5040–5050.

    Google Scholar 

  26. Moraja, M., Amiotti, M., & Longoni, G., MST. (2003). Patterned getter film wafers for wafer level packaging of MEMS, Munich, October 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Valzasina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allegato, G., Corso, L., Valzasina, C. (2022). Inertial Sensors. In: Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (eds) Silicon Sensors and Actuators. Springer, Cham. https://doi.org/10.1007/978-3-030-80135-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80135-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80134-2

  • Online ISBN: 978-3-030-80135-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics