Skip to main content
Log in

On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Present work deals with the problem of an infinite long hollow cylinder with variable thermal conductivity in the context of generalized thermo-viscoelasticity theory with thermal relaxation. A mapping of Kirchhoff’s transformation was used to solve a problem with variable thermal conductivity. The Laplace transform is used. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical computations for the temperature, the displacement and the stress distributions are carried out and represented graphically. The results indicate that the thermal conductivity play a major role in all considered distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

λ, μ :

Lame’ constants

ρ :

Mass density

t :

Time

C E :

Specific heat at constant strains

K :

=λ + (2/3)μ, bulk modulus

ɛ ij :

Components of strain tensor

e ij :

Components of strain deviator tensor

σ ij :

Components of stress tensor

S ij :

Components of stress deviator tensor

e :

=ɛ ii , Dilatation

k :

Thermal conductivity

T :

Absolute temperature

u i :

Components of displacement vector

α T :

Coefficient of linear thermal expansion

γ:

=3 K α T

δ ij :

Kronecker’s delta

T o :

Reference temperature

c 1 :

\(= \left[ {(\lambda + 2{\kern 1pt} \mu \,){\kern 1pt} /\,\rho } \right]{\kern 1pt}^{1/2}\), speed of propagation of isothermal elastic waves

η o :

=ρC E /k

ɛ :

\({ = }\frac{{ \, \gamma^{2} T_{0} }}{{k_{o} \eta_{o} \rho c_{1}^{2} }}\), Thermal coupling parameter

θ :

=T − T 0, such that |θ/T 0| < < 1

τ o :

Relaxation time

\(\Gamma (.)\) :

Gamma function

References

  • Atkinson C, Craster R (1995) Theoretical aspects of fracture mechanics. Prog Aerosp Sci 31(1):1–83

    Article  Google Scholar 

  • Biot M (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

    Article  MathSciNet  MATH  Google Scholar 

  • Drozdov AD, Agarwal S, Gupta RK (2004) Linear thermo-viscoelasticity of isotactic polypropylene. Comput Mater Sci 29(2):195–213

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2002) On the boundary integral formulation of thermo-viscoelasticity theory. Int J Eng Sci 40(17):1943–1956

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2004a) Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. Appl Math Comput 151(2):347–362

    MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2004b) Discontinuities in generalized thermo-viscoelasticity under four theories. J Therm Stress 27(12):1187–1212

    Article  MATH  Google Scholar 

  • Ezzat MA, El-Bary AA (2016a) Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int J Therm Sci 108(10):62–69

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016b) Effects of variable thermal conductivity on Stokes’ flow of a thermoelectric fluid with fractional order of heat transfer. Int J Therm Sci 100(2):305–315

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016c) Thermoelectric MHD with memory-dependent derivative heat transfer. Int Commun Heat Mass Transf 75(7):270–281

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2002a) The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J Therm Stress 25(6):507–522

    Article  MathSciNet  Google Scholar 

  • Ezzat MA, El-Karamany AS (2002b) The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int J Eng Sci 40(11):1275–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2003) On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation. Can J Phys 81(6):823–833

    Article  Google Scholar 

  • Ezzat MA, Fayik MA (2014) Magneto-thermo-viscoelastic medium associated with Wiedemann–Franz law. Mech Adv Mater Struct 21(10):824–835

    Article  Google Scholar 

  • Ezzat MA, Othman MI, Helmy KA (1999) A problem of a micropolar magnetohydrodynamic boundary-layer flow. Can J Phys 77(10):813–827

    Article  Google Scholar 

  • Ezzat MA, El-Karamany SA, El-Bary AA (2014) Generalized thermo-viscoelasticity with memory-dependent derivatives. Int J Mech Sci 89(12):470–475

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2015) Thermo-viscoelastic materials with fractional relaxation operators. Appl Math Model 26(12):1684–1697

    MathSciNet  Google Scholar 

  • Hetnarski R (1996) Thermal stresses I. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Honig G, Hirdes U (1984) A method for the numerical inversion of the Laplace transform. Comput Appl Math 10(1):113–132

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar R, Partap G (2009) Axi-symmetric vibrations in a microstretch viscoelastic plate. Appl Math Inf Sci 3(1):25–44

    MathSciNet  MATH  Google Scholar 

  • Kumar R, Sharma KD, Garg SK (2014) Reflection of plane waves in transversely isotropic micropolar viscothermoelastic solid. Mater Phys Mech 22(7):1–14

    Google Scholar 

  • Kumar R, Sharma KD, Garg SK (2015) Fundamental solution in micropolar viscothermoelastic solids with void. Int J Appl Mech Eng 20(1):109–125

    Article  Google Scholar 

  • Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

    Article  MATH  Google Scholar 

  • Sherief HH, Hamza F (2016) Modeling of variable thermal conductivity in a generalized thermoelastic infinitely long hollow cylinder. Meccanica 51(3):551–558

    Article  MathSciNet  MATH  Google Scholar 

  • Watson GN (1996) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ezzat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, M.A., El-Bary, A.A. On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity. Microsyst Technol 23, 3263–3270 (2017). https://doi.org/10.1007/s00542-016-3101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3101-2

Keywords

Navigation