Skip to main content

Advertisement

Log in

Comparative study of conventional and magnetically coupled piezoelectric energy harvester to optimize output voltage and bandwidth

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Energy harvesting has experienced significant attention from researchers globally. This is due to the quest to power remote sensors and portable devices with power requirements of tens to hundreds of μW. Hence, ambient vibration energy has the potential to provide such power demands. Thus, cantilever beams with piezoelectric materials have been utilized to transduce mechanical energy in vibrating bodies to electrical energy. However, the challenge is to develop energy harvesters that can harvest sufficient amount of energy needed to power wireless sensor nodes at wide frequency bandwidth. In this article, piezoelectric energy harvester (PEH) beams with coupled magnets are proposed to address this issue. With macro fiber composite as the piezoelectric transducer, mathematical models of different system configurations having magnetic couplings are derived based on the continuum based model. Simulations of the system dynamics are done using numerical integration technique in MATLAB software to study the influence of magnetic interactions in generating power and frequency bandwidth due to base excitations at low frequency range. Experimental results comparing conventional system and the proposed piezoelectric beam configurations with coupled magnets are also presented. Finally, the optimal beam separation distance between the magnetic oscillator and PEH is presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1

    Article  Google Scholar 

  • Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035. doi:10.1088/0964-1726/17/01/015035

    Article  Google Scholar 

  • Cook-Chennault K, Thambi N, Sastry A (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001

    Article  Google Scholar 

  • Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102. doi:10.1103/PhysRevLett.102.080601

  • Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, London

    Book  Google Scholar 

  • Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94. doi:10.1063/1.3159815

  • Liao Y, Sodano HA (2009) Optimal parameters and power characteristics of piezoelectric energy harvesters with an RC circuit. Smart Mater Struct 18:045011

    Article  Google Scholar 

  • Lin J-T, Lee B, Alphenaar B (2010) The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency. Smart Mater Struct 19:045012

    Article  Google Scholar 

  • Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54–55:417–426. doi:10.1016/j.ymssp.2014.07.014

    Article  Google Scholar 

  • Qing O, Xiaoqi C, Gutschmidt S, Wood A, Leigh N (2010) A two-mass cantilever beam model for vibration energy harvesting applications. In: Automation Science and Engineering (CASE), 2010 IEEE conference, pp 301–306. doi:10.1109/COASE.2010.5584730

  • Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intell Mater Syst Struct 16:809–823

    Article  Google Scholar 

  • Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52:500–504

    Article  Google Scholar 

  • Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95:174103. doi:10.1063/1.3253710

    Article  Google Scholar 

  • Tang L, Yang Y (2012) A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl Phys Lett 101:094102. doi:10.1063/1.4748794

    Article  Google Scholar 

  • Tang L, Yang Y, Soh CK (2012) Improving functionality of vibration energy harvesters using magnets. J Intell Mater Syst Struct 23:1433–1449. doi:10.1177/1045389x12443016

    Article  Google Scholar 

  • Tang L, Yang Y, Soh C (2013) Broadband vibration energy harvesting techniques. In: Elvin N, Erturk A (eds) Advances in energy harvesting methods, Springer, New York, pp 17–61. doi:10.1007/978-1-4614-5705-3_2

  • Timoshenko S, Woinowsky-Krieger S, Woinowsky-Krieger S (1959) Theory of plates and shells, vol 2. McGraw-hill, New York

    MATH  Google Scholar 

  • Twiefel J, Westermann H (2013) Survey on broadband techniques for vibration energy harvesting. J Intell Mater Syst Struct. doi:10.1177/1045389x13476149

    Google Scholar 

  • Vokoun D, Beleggia M, Heller L, Šittner P (2009) Magnetostatic interactions and forces between cylindrical permanent magnets. J Magn Magn Mater 321:3758–3763. doi:10.1016/j.jmmm.2009.07.030

    Article  Google Scholar 

  • Yang Y, Tang L (2009) Equivalent circuit modeling of piezoelectric energy harvesters. J Intell Mater Syst Struct 20:2223–2235. doi:10.1177/1045389x09351757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asan G. A. Muthalif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, D.S., Muthalif, A.G.A., Nordin, N.H.D. et al. Comparative study of conventional and magnetically coupled piezoelectric energy harvester to optimize output voltage and bandwidth. Microsyst Technol 23, 2663–2674 (2017). https://doi.org/10.1007/s00542-016-3066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3066-1

Keywords

Navigation