Skip to main content
Log in

Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A fractional model of the equations of generalized magneto-thermoelasticity for a perfect conducting isotropic thermoelastic media is given. This model is applied to solve a problem of an infinite body with a cylindrical cavity in the presence of an axial uniform magnetic field. The boundary of the cavity is subjected to a combination of thermal and mechanical shock acting for a finite period of time. The solution is obtained by a direct approach by using the thermoelastic potential function. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical computations for the temperature, the displacement and the stress distributions as well as for the induced magnetic and electric fields are carried out and represented graphically. Comparisons are made with the results predicted by the generalizations, Lord–Shulman theory, and Green–Lindsay theory as well as to the coupled theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abouelregal AE, Zenkour MA (2015) Generalized thermoelastic vibration of a microbeam with an axial force. Microsyst Technol 21:1427–1435

    Article  Google Scholar 

  • Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time Depend Mater 9:15–34

    Article  Google Scholar 

  • Biot M (1955) Variational principle in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97:1463–1469

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo M (1974) Vibrations on an infinite viscoelastic layer with a dissipative memory. J Acoust Soc Am 56:897–904

    Article  MATH  Google Scholar 

  • Caputo M, Mainardi F (1971) Linear model of dissipation in an elastic solids. Riv Nuovo Cim 1:161–198

    Article  Google Scholar 

  • Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comptes Rendus 247:431–433

    MATH  Google Scholar 

  • Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729

    Article  Google Scholar 

  • Choudhuri S (1984) Electro-magneto-thermo-elastic waves in rotating media with thermal relaxation. Int J Eng Sci 22:519–530

    Article  MATH  Google Scholar 

  • Dreyer W, Struchtrup H (1993) Heat pulse experiments revisited. Contin Mech Thermodyn 5:3–50

    Article  MathSciNet  Google Scholar 

  • El-Karamany AS, Ezzat MA (2002) On the boundary integral formulation of thermo-viscoelasticity theory. Int J Eng Sci 40:1943–1956

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2004a) Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. Appl Math Comput 151:347–362

    MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2004b) Discontinuities in generalized thermo-viscoelasticity under four theories. J Therm Stresses 27:1187–1212

    Article  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2005) Propagation of discontinuities in thermopiezoelectric rod. J Therm Stresses 28:997–1030

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2009) Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times. Mech Time Depend Mater 13:93–115

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011a) On fractional thermoelastisity. Math Mech Solids 16:334–346

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011b) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stresses 34:264–284

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2013) On the three-phase-lag linear micropolar thermoelasticity theory. Eur J Mech A Solids 40:198–208

    Article  Google Scholar 

  • Ezzat MA (1997) State space approach to generalized magneto-thermoelasticity thermoelasticity with two relaxation times in a medium of perfect conductivity. Int J Eng Sci 35:741–752

    Article  MATH  Google Scholar 

  • Ezzat MA (2001) Free convection effects on perfectly conducting fluid. Int J Eng Sci 39:799–819

    Article  MATH  Google Scholar 

  • Ezzat MA (2004) Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region. Int J Eng Sci 42:1503–1519

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA (2006) The relaxation effects of the volume properties of electrically conducting viscoelastic material. Mater Sci Eng B 130:11–23

    Article  Google Scholar 

  • Ezzat MA (2010) Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys B 405:4188–4194

    Article  Google Scholar 

  • Ezzat MA (2011a) Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys B 406:30–35

    Article  Google Scholar 

  • Ezzat MA (2011b) Theory of fractional order in generalized thermoelectric MHD. Appl Math Model 35:4965–4978

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA (2011c) Thermoelectric MHD with modified Fourier’s law. Int J Therm Sci 50:449–455

    Article  Google Scholar 

  • Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transfer 48:71–82

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2012) MHD free convection flow with fractional heat conduction law. MHD 48:587–606

    Google Scholar 

  • Ezzat MA, El-Karamany AS (2002a) The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J Therm Stresses 25:507–522

    Article  MathSciNet  Google Scholar 

  • Ezzat MA, El-Karamany AS (2002b) The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int J Eng Sci 40:1275–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2003a) On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can J Phys 81:823–833

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2003b) Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity. Appl Math Comput 142:449–467

    MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2006) Propagation of discontinuities in magneto-thermoelastic half space. J Therm Stresses 29:331–358

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011a) Fractional order theory of a perfect conducting thermoelastic medium. Can J Phys 89:311–318

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011b) Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP 62:937–952

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011c) Theory of fractional order in electro-thermoelasticity. Eur J Mech A Solid 30:491–500

    Article  MATH  Google Scholar 

  • Ezzat MA, Othman MI (2002) State space approach to generalized magnetothermoelasticity with thermal relaxation in a medium of perfect conductivity. J Therm Stresses 25:409–429

    Article  Google Scholar 

  • Ezzat MA, Othman MI, Helmy KA (1999) A problem of a micropolar magnetohydrodynamic boundary-layer flow. Can J Phys 77:813–827

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, Samaan AA (2004) The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation. Appl Math Comput 147:169–189

    MathSciNet  MATH  Google Scholar 

  • Ezzat MA, Al-Sowayan NS, Al-Muhiameed ZI (2014) Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transfer 50:907–914

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2015a) A novel magneto-thermoelasticity theory with memory-dependent derivative. J Electromag Waves Appl 29:1018–1031

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2015b) Electro-magnetic waves in generalized thermo-viscoelasticity for different theories. Int J Appl Electromag Mech 47:95–111

    Google Scholar 

  • Green A, Lindsay K (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  • Hamza F, Abdou M, Abd El-Latief AM (2014) Generalized fractional thermoelasticity associated with two relaxation times. J Therm Stresses 37:1080–1093

    Article  Google Scholar 

  • Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stresses 22:451–476

    Article  MathSciNet  MATH  Google Scholar 

  • Honig G, Hirdes U (1984) A method for the numerical inversion of the Laplace transform. J Comput Appl Math 10:113–132

    Article  MathSciNet  MATH  Google Scholar 

  • Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, New York

    MATH  Google Scholar 

  • Joseph D, Preziosi L (1989) Heat waves. Rev Modern Phys 61:41–73

    Article  MathSciNet  MATH  Google Scholar 

  • Lord H, Shulman YA (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  Google Scholar 

  • Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics. Springer, New York, pp 291–348

    Chapter  Google Scholar 

  • Nayfeh A, Nemat-Nasser S (1972) Electromagneto-thermoelastic plane waves in solids with thermal relaxation. J Appl Mech Ser E 39:108–113

    Article  MATH  Google Scholar 

  • Nowinski JL (1978) Theory of thermoelasticity with applications. Sijthoff & Noordhoff International, Alphen aan den Rijn

    Book  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Povstenko YZ (2005) Fractional heat conduction and associated thermal stress. J Therm Stresses 28:83–102

    Article  MathSciNet  Google Scholar 

  • Povstenko YZ (2009) Thermoelasticity that uses fractional heat conduction equation. J Math Sci 162:296–305

    Article  MathSciNet  Google Scholar 

  • Povstenko YZ (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Therm Stresses 34:97–114

    Article  Google Scholar 

  • Sherief HH, Ezzat MA (1998) A Problem in generalized magneto-thermoelasticity for an infinitely long annular cylinder. J Eng Math 34:387–402

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan B (2011) Heat waves. Springer, New York

    Book  MATH  Google Scholar 

  • Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes Rendus 246:3154–3155

    MathSciNet  MATH  Google Scholar 

  • Vernotte P (1961) Some possible complications in the phenomena of thermal conduction. Comptes Rendus 252:2190–2191

    Google Scholar 

  • Wang L, Zhou X, Wei X (2008) Heat conduction-mathematical models and analytical solutions. Springer, Berlin

    MATH  Google Scholar 

  • Zenkour MA (2015) Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsyst Technol. doi:10.1007/s00542-015-2703-4

    Google Scholar 

  • Zenkour MA, Abouelregal AE (2015) Nonlocal thermoelastic nanobeam subjected to a sinusoidal pulse heating and temperature-dependent physical properties. Microsyst Technol 21:1767–1776

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Appendices

Appendix 1

For the thermal shock problem, we can get the solution by substitution σ o  = 0 in the Eqs. (58)–(63), we get

$$ \bar{\theta} = \frac{{\theta_{o} }}{\omega}\sum\limits_{i = 1}^{2} {a_{i2} K_{o} (k_{i} \,r)}, $$
(64)
$$ {{\bar{u}}}= - \frac{{{\text{a}}{\theta}_{\text{o}} \,\left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{k}}_{\text{i}} \,{\text{a}}_{\text{i2}}}}{{{\text{k}}_{\text{i}}^{2} - {\zeta}\,{\text{s}}^{2}}}} \,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right), $$
(65)
$$ {{\bar{h}}}= - \frac{{{\text{a}}\,{\theta}_{\text{o}} \,\left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{k}}_{\text{i}}^{2} {\text{a}}_{\text{i2}}}}{{{\text{k}}_{\text{i}}^{2} - {\zeta}\,{\text{s}}^{2}}}} \,{\text{K}}_{\text{o}} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right), $$
(66)
$$ {{\bar{E}}}= - \frac{{{\text{a}}\,{\theta}_{\text{o}} \,{\text{s}}\,\left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{k}}_{\text{i}} {\text{a}}_{\text{i2}}}}{{{\text{k}}_{\text{i}}^{2} -\zeta \,{\text{s}}^{2}}}} \,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right), $$
(67)
$$ {{\bar{\sigma}}}_{\text{rr}} = \frac{{{\text{a}}\,{\theta}_{\text{o}} \,\left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{a}}_{\text{i2}}}}{{{\text{k}}_{\text{i}}^{2} -\zeta \,{\text{s}}^{2}}}} \left[{\zeta {\beta}^{2} {\text{s}}^{2} {\text{K}}_{\text{o}} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)+\frac{{{2}\,{\text{k}}_{\text{i}}}}{\text{r}}\,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)} \right], $$
(68)
$$ {{\bar{\sigma}}}_{\psi \psi} = \frac{{{\text{a}}\,{\theta}_{\text{o}} \left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{a}}_{\text{i2}}}}{{{\text{k}}_{\text{i}}^{2} -\zeta \,{\text{s}}^{2}}}} \left[{\left({\zeta {\beta}^{2} {\text{s}}^{2} - 2} \right)\,{\text{K}}_{\text{o}} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)-\frac{{{2}\,{\text{k}}_{\text{i}}}}{\text{r}}\,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)} \right]. $$
(69)

Appendix 2

For the mechanical shock problem, we can get the solution by substitution θ o  = 0 in the Eqs. (58)–(63), we get

$$ {{\bar{\theta}}}=\frac{{{\sigma}_{\text{o}}}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {{\text{a}}_{\text{i1}} \,{\text{K}}_{\text{o}} ( {\text{k}}_{\text{i}} \,{\text{r)}}}, $$
(70)
$$ {{\bar{u}}}= - \frac{{{\text{a}}{\sigma}_{\text{o}} \,\left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{k}}_{\text{i}} {\text{a}}_{\text{i1}} }}{{{\text{k}}_{\text{i}}^{2} - \zeta \,{\text{s}}^{2}}}} \,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right). $$
(71)
$$ {{\bar{h}}}= - \frac{{{\text{a}}{\sigma}_{\text{o}} \left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{k}}_{\text{i}}^{2} \,{\text{a}}_{\text{i1}}}}{{{\text{k}}_{\text{i}}^{2} - \zeta \,{\text{s}}^{2}}}} \,{\text{K}}_{\text{o}} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right), $$
(72)
$$ {{\bar{E}}}= - \frac{{{\text{a}}\,{\text{s}}\,{\sigma}_{\text{o}} \,\left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{k}}_{\text{i}} {\text{a}}_{\text{i1}} }}{{{\text{k}}_{\text{i}}^{2} - \zeta \,{\text{s}}^{2}}}} \,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right), $$
(73)
$$ {{\bar{\sigma}}}_{\text{rr}} = \frac{{{\text{a}}\,{\sigma}_{\text{o}} \left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{a}}_{\text{i1}}}}{{{\text{k}}_{\text{i}}^{2} - \zeta \,{\text{s}}^{2}}}} \left[{\zeta \,{\beta}^{2} \,{\text{s}}^{2} {\text{K}}_{\text{o}} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)+\frac{{{2}\,{\text{k}}_{\text{i}}}}{\text{r}}\,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)} \right], $$
(74)
$$ {{\bar{\sigma}}}_{\psi \psi} = \frac{{{\text{a}}\,{\sigma}_{\text{o}} \left(1+\frac{{{\upsilon}^{\alpha}}}{\alpha !}{\text{s}}^{\alpha} \right)}}{\omega}\,\sum\limits_{\text{i = 1}}^{2} {\frac{{{\text{a}}_{\text{i1}}}}{{{\text{k}}_{\text{i}}^{2} - \zeta \,{\text{s}}^{2}}}} \left[{\left({\zeta \,{\beta}^{2} \,{\text{s}}^{2} - {2}} \right)\,{\text{K}}_{\text{o}} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right) - \frac{{{2}\,{\text{k}}_{\text{i}}}}{\text{r}}\,{\text{K}}_{1} \left({{\text{k}}_{\text{i}} \,{\text{r}}} \right)} \right]. $$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, M.A., El-Bary, A.A. Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsyst Technol 23, 2447–2458 (2017). https://doi.org/10.1007/s00542-016-2976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2976-2

Keywords

Navigation