Skip to main content
Log in

Closed form solutions for nonlinear static response of curled cantilever micro-/nanobeams including both the fringing field and van der Waals force effect

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear static responses of curled cantilever micro-/nanobeams are investigated. The beams are subjected to a one-sided electrostatic actuation, and the effects of both fringing field and van der Waals force are also included. Based on the combination of the Galerkin method and the choice of the shape function of the beam deformation, the analytical approximate solutions are established. The Pull-In voltages which determine the stability of the curled beam actuators are also obtained. When van der Waals force is neglected, the Pull-In parameters are explicitly presented. These approximate solutions show excellent agreements with numerical solutions obtained by the shooting method and the experimental data for a wide range of beam length. Expressions of these analytical approximate solutions are brief and could easily be used to derive the effects of various factors, such as fringing field, van der Waals force, the width of the beam and the gap, on micro-/nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdulla SMC, Yagubizade H, Krijnen GJM (2012) Analysis of resonance frequency and pull-in voltages of curled micro-bimorph cantilevers. J Micromech Microeng 22(3):035014

    Article  Google Scholar 

  • Ansari R, Gholami R, Shojaei MF, Mohammadi V, Sahmani S (2015) Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. Eur J Mech A Solids 49:251–267

    Article  MathSciNet  Google Scholar 

  • Ardito R, Corigliano A, Frangi A (2013) Modelling of spontaneous adhesion phenomena in micro-electro-mechanical systems. Eur J Mech A Solids 39:144–152

    Article  MathSciNet  MATH  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008) Reduced-order models for micro-electromechanical rectangular and circular plates incorporating the Casimir force. Int J Solids Struct 45:3558–3583

    Article  MATH  Google Scholar 

  • Bell DJ, Lu TJ, Fleck NA, Spearing SM (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153–S164

    Article  Google Scholar 

  • Bergers LIJC, Hoefnagels JPM, Geers MGD (2014) Characterization of time-dependent anelastic microbeam bending mechanics. J Phys D Appl Phys 47(35):355306

    Article  Google Scholar 

  • Bergström L (1997) Hamaker constants of inorganic materials. Adv Colloid Interface 70(1–3):125–169

    Article  Google Scholar 

  • Bhushan B, Agrawal GB (2002) Stress analysis of nanostructures using a finite element method. Nanotechnology 13(4):515–523

    Article  Google Scholar 

  • Buhmann SY (2012) Dispersion forces I: Macroscopic quantum electrodynamics and ground-state Casimir, Casimir–Polder and van der Waals Forces. Springer, Berlin

    Google Scholar 

  • Buks E, Roukes ML (2001) Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys Rev B 63(3):033402

    Article  Google Scholar 

  • Carcaterra A (2014) Quantum Euler beam—QUEB: modeling nanobeams vibration. Contin Mech Thermodyn 27(1–2):145–156

    MathSciNet  MATH  Google Scholar 

  • Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet 51:793–795

    MATH  Google Scholar 

  • Chowdhery S, Ahmadi M, Miller WC (2005) A closed form model for the Pull-In voltage of electrostatically actuated cantilever beams. J Micromech Microeng 15:756–763

    Article  Google Scholar 

  • Chuang WC, Lee HL, Chang PZ, Hu YC (2010) Review on the modeling of electrostatic MEMS. Sensors 10:6149–6171

    Article  Google Scholar 

  • Corigliano A, Pugno NM (2013) Micro- or nano-mechanics. Meccanica 48:1817–1818

    Article  MATH  Google Scholar 

  • Corigliano A, Ghisi A, Langfelder G, Longoni A, Zaraga F, Merassi A (2011) A microsystem for the fracture characterization of polysilicon at the micro-scale. Eur J Mech A Solids 30(2):127–136

    Article  MATH  Google Scholar 

  • DelRio FW, de Boer MP, Knapp JA, Reedy ED, Clews PJ, Dunn ML (2005) The role of van der Waals forces in adhesion of micromachined surfaces. Nat Mater 4(8):629–634

    Article  Google Scholar 

  • Duan JS, Rach R, Wazwaz AM (2013) Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems. Int J Nonlinear Mech 49:159–169

    Article  Google Scholar 

  • Elata D, Abu-Salih S (2005) Analysis of a novel method for measuring residual stress in micro-systems. J Micromech Microeng 15:921–927

    Article  Google Scholar 

  • Espinosa HD, Zhu Y, Fischer M, Hutchinson J (2003) An experimental/computational approach to identify moduli and residual stress in MEMS radio-frequency switches. Exp Mech 43(3):309–316

    Article  Google Scholar 

  • Fang W, Wickert JA (1994) Post buckling of micromachined beams. J Micromech Microeng 4:116–122

    Article  Google Scholar 

  • Gupta RK (1997) Electrostatic Pull-In test structure design for in situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. dissertation, Massachusetts Institute of Technology

  • Gutschmidt S (2010) The Influence of higher-order mode shapes for reduced-order models of electrostatically actuated microbeams. ASME J Appl Mech 77:041007

    Article  Google Scholar 

  • Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica 4(10):1058–1072

    Article  Google Scholar 

  • Hesketh PJ (2011) BioNanoFluidic MEMS. Springer, New York

    Google Scholar 

  • Hess AE, Capadona JR, Shanmuganathan K, Hsu L, Rowan SJ, Weder C, Tyler DJ, Zorman CA (2011) Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes. J Micromech Microeng 21:054009

    Article  Google Scholar 

  • Hu YC (2006) Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads. J Micromech Microeng 16:648–655

    Article  Google Scholar 

  • Hu YC, Wei CS (2007) An analytical model considering the fringing fields for calculating the pull-in voltage of micro curled cantilever beams. J Micromech Microeng 17:61–67

    Article  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S (2011) Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casmir forces. Acta Mech 218(1–2):161–174

    Article  MATH  Google Scholar 

  • Karamooz Ravari MR, Talebi S, Shahidi AR (2014) Analysis of the buckling of rectangular nanoplates by use of finite-difference method. Meccanica 49:1443–1455

    Article  MathSciNet  MATH  Google Scholar 

  • Kazama A, Aono T, Okada R (2013) Stress relaxation mechanism with a ring-shaped beam for a piezoresistive three-axis accelerometer. J Microelectromech Syst 22:386–394

    Article  Google Scholar 

  • Krylov S (2007) Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int J Non Linear Mech 42:626–642

    Article  Google Scholar 

  • Li XD, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36

    Article  Google Scholar 

  • Li YL, Meguid SA, Fu YM, Xu DL (2014) Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proc R Soc A Math Phys 470(2162):20130473

    Article  MATH  Google Scholar 

  • Lueke J, Rezaei M, Moussa WA (2014) Investigation of folded spring structures for vibration-based piezoelectric energy harvesting. J Micromech Microeng 24(12):125011

    Article  Google Scholar 

  • Mariani S, Ghisi A, Corigliano A, Zerbini S (2007) Multi-scale analysis of MEMS sensors subject to drop impacts. Sensors 7(9):1817–1833

    Article  Google Scholar 

  • Moeenfard H, Darvishian A, Ahmadian MT (2013) A coupled bending-torsion model for electrostatically actuated torsional nano/micro-actuators with considering influence of van der Waals force. Acta Mech 224:1791–1800

    Article  MathSciNet  MATH  Google Scholar 

  • Mojahedi M, Moeenfard H, Ahmadian MT (2009) A new efficient approach for modeling and simulation of nano-switches under the combined effect of intermolecular surface forces and electrostatic actuation. Int J Appl Mech 1(2):349–365

    Article  Google Scholar 

  • Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014) Effects of Casimir and van der Waals forces on the pull-in instability of the nonlinear micro and nano-bridge gyroscopes. Int J Struct Stab Dyn 14(2):1350059

    Article  MathSciNet  Google Scholar 

  • Nasedkin AV, Eremeyev VA (2014) Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 94(10):878–892

    Article  MathSciNet  MATH  Google Scholar 

  • Noghrehabadi A, Ghalambaz M, Ghanbarzadeh A (2012) A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM-Pade technique. Comput Math Appl 64(9):2806–2815

    Article  MathSciNet  MATH  Google Scholar 

  • Ou KS, Chen KS, Yang TS, Lee SY (2011) A novel semianalytical approach for finding pull-in voltages of micro cantilever beams subjected to electrostatic loads and residual stress gradients. J Microelectromech Syst 20(2):527–537

    Article  Google Scholar 

  • Park H, Park J, Park J (2013) A curled PZT cantilever based MEMS harvester. IEEE - ISAF/PFM, Prague

    Google Scholar 

  • Ramezani A, Alasty A, Akbari J (2007) Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. Int J Solids Struct 44:4925–4941

    Article  MATH  Google Scholar 

  • Sabate N, Vogel D, Gollhardt A, Keller J, Cane C, Gracia I, Morante JR, Michel B (2007) Residual stress measurement on a MEMS structure with high-spatial resolution. J Microelectromech Syst 16(2):365–372

    Article  Google Scholar 

  • Scott S, Kim JI, Sadeghi F, Peroulis D (2012) An analytical capacitance model of temperature-sensitive, large-displacement multimorph cantilevers: numerical and experimental validation. J Microelectromech Syst 21(1):161–170

    Article  Google Scholar 

  • Shames IH, Dym CL (1985) Energy and finite element methods in structural mechanics. McGraw-Hill, New York

    MATH  Google Scholar 

  • Small J, Irshad W, Fruehling A, Garg A, Liu X, Peroulis D (2012) Electrostatic fringing-field actuation for pull-in free RF-MEMS analogue tunable resonators. J Micromech Microeng 22:095004

    Article  Google Scholar 

  • Soroush R, Koochi A, Kazemi AS, Noghrehabadi A, Haddadpour H, Abadyan M (2010) Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Phys Scr 82:045801

    Article  MATH  Google Scholar 

  • Sundararajan S, Bhushan B (2002) Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sensor Actuators A Phys 101(3):338–351

    Article  Google Scholar 

  • Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGrawHill-Kogakusha Ltd, Tokyo

    Google Scholar 

  • Wei LC, Mohammad AB, Kassim NM (2002) Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam. In: Proceedings of IEEE ISCE 2002

  • Wunderle B, Michel B (2009) Lifetime modelling for microsystems integration: from nano to systems. Microsyst Technol 15(6):799–812

    Article  Google Scholar 

  • Xiang HJ, Shi ZF (2009) Static analysis of functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. Eur J Mech A Solids 28:338–346

    Article  MATH  Google Scholar 

  • Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based mems. J Microelectromech Syst 12:672–680

    Article  Google Scholar 

  • Yu YP, Wu BS, Lim CW (2012) Numerical and analytical approximations to large post-buckling deformation of MEMS. Int J Mech Sci 55:95–103

    Article  Google Scholar 

  • Zhang ZQ, Liao XP (2013) A lumped model with phase analysis for inline RF MEMS power sensor applications. Sensors Actuators A Phys 194(1):204–211

    Article  Google Scholar 

  • Zhang LX, Zhao YP (2003) Electromechanical model of RF MEMS switches. Microsyst Technol 9(6–7):420–426

    Article  Google Scholar 

  • Zhang Y, Zhao YP (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensor Actuators A Phys 127:366–380

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper is supported by SinoProbe-09-05 (Grant No. 201011082), the National Natural Science Foundation of China (Grant No. 11402095), and the Science and Technology Developing Plan Project of Jilin Province (Grant No. 20160520021JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Yu.

Appendix

Appendix

$$ \begin{aligned} B_{1} = &\,\left\{ {\left( {15940696127569920000 - 5259888473162400000\pi } \right)} \right.c^{4} + c^{3} \left[ { - 20214118900039680000 \, } \right. \\ & \quad + \, 7205401210807800000\pi + \left( {32072765077566259200} \right. - 4623912780987220875\pi \\ & \quad - 2526764862504960000\pi^{2} + \left. {300225050450325000\pi^{3} } \right)\left. {\rho \varOmega^{2} } \right] + c^{2} \left[ {6738039633346560000} \right. \\ & \quad - 3260484855936000000\pi + \left( { - 28595162967559372800} \right. + 4827328967260800000\pi \\ & \quad + 1684509908336640000\pi^{2} - \left. {271707071328000000\pi^{3} } \right)\rho \varOmega^{2} + \left( {91183675520488308736} \right. \\ & \quad - 4235045288859000000\pi - 10723186112834764800\pi^{2} + 603416120907600000\pi^{3} \\ & \quad + 105281869271040000\pi^{4} - \left. {10189015174800000\pi^{5} } \right)\left. {\rho^{2} \varOmega^{4} } \right] + c\left[ {543414142656000000\pi } \right. \\ & \quad + \left( {5409989686886400000} \right. - 1206832241815200000\pi + \left. {67926767832000000\pi^{3} } \right)\rho \varOmega^{2} \\ & \quad - 36066597912576000000 + 2117522644429500000\pi + 4057492265164800000\pi^{2} \\ & \quad - 301708060453800000\pi^{3} + \left. {5094507587400000\pi^{5} } \right)\rho^{2} \varOmega^{4} + \left( {182336689446912000000} \right. \\ & \quad - 2743974771160218750\pi - 22541623695360000000\pi^{2} + 441150550922812500\pi^{3} \\ & \quad + 422655444288000000\pi^{4} - 18856753778362500\pi^{5} + \left. {151622249625000\pi^{7} } \right) \\ & \quad \times {{\left. {\left. {\rho^{3} \varOmega^{6} } \right]} \right\}} \mathord{\left/ {\vphantom {{\left. {\left. {\rho^{3} \varOmega^{6} } \right]} \right\}} {2103884878233600000}}} \right. \kern-0pt} {2103884878233600000}} \\ \end{aligned} $$
$$ \begin{aligned} B_{2} &= \left\{ {72c^{2} F \, (} \right. - 11997568 + 4143195\pi ) - 735c\left[ {( - 8960 + 3447\pi )} \right.\left( {1 + 2F} \right) + F(1304576 - 41559\pi \\ & \quad - 161280\pi^{2} + \left. {20682\pi^{3} } \right)\left. {\rho \varOmega^{2} } \right] + 686\left[ {8640(1 + F) \, ( - 40 + 21\pi )} \right. + 120(1 + 2F) \, (2912 - 360\pi^{2} \\ & \quad + 63\pi^{3} )\rho \varOmega^{2} + F( - 2099200 + 262080\pi^{2} - 5400\pi^{4} + 567\pi^{5} ){{\left. {\left. {\rho^{2} \varOmega^{4} } \right]} \right\}} \mathord{\left/ {\vphantom {{\left. {\left. {\rho^{2} \varOmega^{4} } \right]} \right\}} {248935680}}} \right. \kern-0pt} {248935680}} \\ \end{aligned} $$
$$ B_{3} = ( - 40 \, + \, 21\pi ){\beta \mathord{\left/ {\vphantom {\beta {42}}} \right. \kern-0pt} {42}} $$
$$ \begin{aligned} D_{1} &=\,420078960000\pi + 3(929359872000 - 207316746000\pi + 11668860000\pi^{3} )\rho \varOmega^{2} \, \\ & \quad + \, 3( - 3097866240000 + 181880251875\pi + 348509952000\pi^{2} \, \\ & \quad - 25914593250\pi^{3} + 437582250\pi^{5} )\rho^{2} \varOmega^{4} \\ \end{aligned} $$
$$ \begin{aligned} D_{2} = &\,3(1157500108800 - 560105280000\pi ) + 3 \, ( - 2456122703872 + 414633492000\pi \\ & \;\;\;\; + 144687513600\pi^{2} - 23337720000\pi^{3} )\rho \varOmega^{2} \\ \end{aligned} $$
$$ D_{3} =\,3( - 1736250163200 + 618893115750\pi ) $$
$$ H = 38416000\left[ {\left( {1 + F} \right)} \right.\left( {21168\pi - 40320} \right) + F(40768 - 5040\pi^{2} + 882\pi^{3} )\left. {\rho \varOmega^{2} } \right] $$
$$ H_{1} = 38416000(80640F - 31023F\pi ). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, Y., Wu, B. et al. Closed form solutions for nonlinear static response of curled cantilever micro-/nanobeams including both the fringing field and van der Waals force effect. Microsyst Technol 23, 163–174 (2017). https://doi.org/10.1007/s00542-016-2870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2870-y

Keywords

Navigation