Skip to main content
Log in

Fabrication of a 2-D in-plane micro needle array integrated with microfluidic components using crystalline wet etching of (110) silicon

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We propose a two-dimensional (2-D) in-plane micro-needle array with shaft sidewalls aligned parallel to the vertical (111) crystalline plane of (110) silicon. Six types of needle tips with various shapes and tapered angles were fabricated so as to maintain the tip sharpness. Two layers of micro needles (upper and bottom needle arrays) for the 2-D array were realized using simultaneous etching from the front and back sides of (110) silicon. In addition, microfluidic components were embedded in the micro-needle chip to inject or extract biochemical samples. The length of the micro needles was easily extended to 2200 μm, and the insertion forces of the single and arrayed micro needles were evaluated by pricking chicken breast flesh. In case of a micro needle having a tapered angle of 10° and tip end width of 1 μm, the insertion force per needle was as low as 15 mN, which is lower than those reported in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chen B, Wei J, Tay FEH, Wong YT, Iliescu C (2008) Silicon microneedle array with biodegradable tips for transdermal drug delivery. Microsyst Technol 14:1015–1019. doi:10.1007/s00542-007-0530-y

    Article  Google Scholar 

  • Choi SO, Kim YC, Lee JW, Park JH, Prausnitz MR, Allen MG (2012) Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array. Small 8(7):1081–1091. doi:10.1002/smll.201101747

    Article  Google Scholar 

  • Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 37(8):1155–1163. doi:10.1016/j.jbiomech.2003.12.010

    Article  Google Scholar 

  • Griss P, Stemme G (2002) Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing. IEEE MEMS 2002:467–470

    Google Scholar 

  • Jeong DH, Kim JM, Noh DY, Kim KH, Lee JH (2011) Micromachined anti-scatter grid fabricated using crystalline wet etching of (110) silicon and metal electroplating for X-ray imaging. Nucl Instrum Meth A 652:846–849. doi:10.1016/j.nima.2010.08.116

    Article  Google Scholar 

  • Ji J, Tay FEH, Miao J, Iliescu C (2006) Microfabricated silicon microneedle array for transdermal drug delivery. J Phys: Conf Ser 34:1127–1131

    Article  Google Scholar 

  • Jin CY, Han MH, Lee SS, Choi YH (2009) Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed Microdevices 11(6):1195–1203. doi:10.1007/s10544-009-9337-1

    Article  Google Scholar 

  • Khanna P, Luongo K, Strom JA, Bhansali S (2010) Sharpening of hollow silicon microneedles to reduce skin penetration force. J Micromech Microeng 20:045011(8 pp) doi:10.1088/0960-1317/20/4/045011

  • Kim SH, Lee SH, Kim YK (2002) A high-aspect-ratio comb actuator using UV-LIGA surface micromachining and (110) silicon bulk micromachining. J Micromech Microeng 12:128–135. doi:10.1088/0960-1317/12/2/306

    Article  Google Scholar 

  • Kochhar JS, Quek TC, Soon WJ, Choi J, Zou S, Kang L (2013) Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci 102(11):4100–4108. doi:10.1002/jps.23724

    Article  Google Scholar 

  • Lee JH, Seo Y, Lim TS, Bishop PL, Papautsky I (2007) MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ Sci Technol 41(22):7857–7863

    Article  Google Scholar 

  • Lee HJ, Jeon HY, Park SJ, Lee HW, Bae S (2010) Micro needle array fabrication for drug delivery and drug delivery evaluation test using optical inspection module. ASR ICNB 2:100–104

    Google Scholar 

  • Paik SJ, Byun S, Lim JM, Park Y, Lee A, Chung S, Chang J, Chun K, Cho D (2004) In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sens Actuator A-Phys 114:276–284. doi:10.1016/j.sna.2003.12.029

    Article  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliver Rev 56:581–587. doi:10.1016/j.addr.2003.10.023

    Article  Google Scholar 

  • Sparks D, Hubbard T (2004) Micromachined needles and lancets with design adjustable bevel angles. J Micromech Microeng 14:1230–1233. doi:10.1088/0960-1317/14/8/016

    Article  Google Scholar 

  • Wang LF, Liu JQ, Yan XX, Yang B, Yang CS (2013) A MEMS-based pyramid micro-needle electrode for long-term EEG measurement. Microsyst Technol 19:269–276. doi:10.1007/s00542-012-1638-2

    Article  Google Scholar 

  • Yang M, Zahn JD (2004) Microneedle insertion force reduction using vibratory actuation. Biomed Microdevices 6(3):177–182

    Article  Google Scholar 

  • Yun SS, You SK, Lee JH (2006) Fabrication of vertical optical plane using DRIE and KOH crystalline etching of (110) silicon wafer. Sens Actuator A-Phys 128:387–394. doi:10.1016/j.sna.2006.02.015

    Article  Google Scholar 

  • Yun SS, An JY, Moon SH, Lee JH (2009) In-plane microneedle chip fabricated by crystalline wet etching of (110) silicon wafer. IEEE Transducers 2009:204–207

    Google Scholar 

  • Zahn JD, Talbot NH, Liepmann D, Pisano AP (2000) Microfabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed Microdevices 2(4):295–303

    Article  Google Scholar 

  • Zhang P, Dalton C, Jullien GA (2009) Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst Technol 15:1073–1082. doi:10.1007/s00542-009-0883-5

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the BioNano Health-Guard Research Center, funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea as the Global Frontier Project (Grant Number H-GUARD_ERND2013M3A6B2078957) and IMSE, GIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, M., Jeong, D., Yun, SS. et al. Fabrication of a 2-D in-plane micro needle array integrated with microfluidic components using crystalline wet etching of (110) silicon. Microsyst Technol 22, 2287–2294 (2016). https://doi.org/10.1007/s00542-015-2596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2596-2

Keywords

Navigation