Skip to main content
Log in

Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a new single pole double throw (SPDT) RF MEMS switch design based on a torsional series capacitive switch. The torsional configuration and use of floating metal reduce the stiction probabilities. Use of a single series capacitive switch compared to the conventional approach of a capacitive and series combination, offers compact size, higher bandwidth and superior reliability. The optimized SPDT topology offers a wider bandwidth of 17 GHz (3–20 GHz) with insertion loss of −0.3 to −0.4 dB and isolation −20 to −44 dB. The proposed structure actuates at 9 V and the contact force varies in the elastic contact regime from 20 to 68 µN for the bias voltage of 10–15 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bansal D, Sharma A, Maninder K, Rangra KJ (2012) Design of vertical packaging technology for RF MEMS Switch. In: SPIE 8549 16th International workshop on physics of semiconductor devices, 854911. doi:10.1117/12.924260

  • Bansal D, Kumar A, Sharma A, Kumar P, Rangra KJ (2014) Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst Technol 20(2):337–340

    Article  Google Scholar 

  • Cheng S, Rantakari P, Malmqvist R, Vähä-Heikkilä CST, Rydberg A, Varis J (2009) Switched beam antenna based on RF MEMS SPDT switch on quartz substrate. IEEE Antennas Wirel Propag Lett 8:383–386

    Article  Google Scholar 

  • Daneshmand M, Mansour RR (2006) C-type and R-type RF MEMS switches for redundancy switch matrix application. In: IEEE international microwave symposium digest (MTT-S). pp144–147

  • Dinardo S, Farinelli P, Giocomozzi F, Mannocchi G, Marcelli R, Margesin B, Mezzanotte P, Mulloni V, Russer P, Sorrentino R, Vitulli F, Vietzorreck L (2006) RF-MEMS based switch matrices for complex switching networks. In: on micro/nano technology for space (MNT)

  • Du YJ, Bao JF, Jiang JW (2013) A new design of multi-bit RF MEMS distributed phase shifters for phase error reduction. Microsyst Technol 19(2):237–244

    Article  Google Scholar 

  • Dv Puyal, Dubuc D, Grenier K, Bordas C, Vendier O, Cazaux J-L (2008) Design of robust RF-MEMS phase shifters in Ka-band. Rom J Inf Sci Technol 11(2):153–165

    Google Scholar 

  • Guangwei Hu B, Liu Z, Qiao Y, Hou Z, Cai J, Liu L, Li Z (2006) Bonding packaging of a SP4T RF MEMS switch. In: IEEE 7th international conference on electronics packaging technology, pp 1–4

  • Jitendra Pal YZ, Junwei Lu, Viet Dao D, Khan F (2014) RF MEMS switches for smart antennas. Microsyst Technol, pp 1–9

  • Kang-Ho Lee, Zhejun Jin and Kyung-Heon Koo (2005) High linearity SPDT switch for dual band wireless LAN applications. In: IEEE Asia-Pacific Conference Proceedings (APMC), p 2

  • King Yuk (Eric) Chan S, Daneshmand M, Mansour RR, Ramer R (2009) Scalable RF MEMS switch matrices: methodology and design. IEEE Trans Microw Theory Tech 57(6):1612–1621

    Article  Google Scholar 

  • Kok-Yan L, Rebeiz GM (2009) A miniature 8–16 GHz packaged tunable frequency and bandwidth RF MEMS filter. In: Proceeding of the IEEE International symposium on radio-frequency integration technology (RFIT), pp 249–252

  • Mahmoodnia H, Ganji B (2014) A novel MEMS tunable antenna with wide tuning range of frequency. Microsyst Technol 1–6

  • Majumder S, Lampen J, Morrison R, Maciel J (2003) A packaged, high-lifetime ohmic MEMS RF switch. In: Proceeding of the IEEE International Microwave Symposium Digest (MTT-S), 2003, vol 3, pp 1935–1938

  • Malczewski A, Pillans B (2004) Single-pole double-throw switches using capacitive MEMS switches. Int J RF Microw Comput Aided Eng 14(4):383–387

    Article  Google Scholar 

  • Malmqvist RR, Samuelsson C, Simon W, Smith D, Rantakari P, Vähä-Heikkilä T, Reyaz S, Varis J, Baggen R (2011) Reconfigurable wideband LNAs using ohmic contact and capacitive RF-MEMS switching circuits. In: Proceedings of the 6th European microwave integrated circuits conference, pp 160–163

  • Misran MH, Shairi NA, Teh GH, Meor Said MA (2012) Design and performance analysis of single biasing based SPDT switch for wireless data communications. In: Proceeding of the IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp 363–366

  • Rangra K, Margesin B, Lorenzelli L, Giacomozzi F, Collini C, Zen M, Soncini G, del Tin L, Gaddi R (2005) Symmetric toggle switch—a new type of RF MEMS switch for telecommunication applications: design and fabrication. Sens Actuators A 123–124:505–514

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS theory, design, and technology. Hoboken, NJ

    Google Scholar 

  • Rebeiz Gabriel M, Muldavin Jeremy B (2001) RF MEMS switches and switch circuits. IEEE Microwave Mag 2(4):59–71

    Article  Google Scholar 

  • Reines SJPI, Rebeiz GM (2010) Compact low-loss tunable x-band bandstop filter with miniature RF-MEMS switches. IEEE Trans Microw Theory Tech 58(7):1887–1895

    Article  Google Scholar 

  • Roy SC, Rangra KJ (2009) Design optimization of RF mems SP4T and SP6T switch. Semiconductor Conference 2009, CAS 2009. International 2:443–446

    Google Scholar 

  • Sergio Dinardo B, Farinelli P, Giocomozzi F, Mannocchi G, Marcelli R, Margesin B, Mezzanotte P, Mulloni V, Russer P, Sorrentino R, Vitulli F, Vietzorreck L (2006) Broadband RF-MEMS based SPDT. In: Proceedings of the 36th European Microwave Conference, pp 1727–1730

  • Shairi NA, Ahmad BH, Abdul Aziz MZA (2011) SPDT switch with defected ground structure for time division duplex switching in wireless data communication system. In: IEEE International RF and Microwave Conference (RFM), pp 238–241

  • Sinha S, Bansal D, Rangra KJ (2012) Design and optimization of RF MEMS T-type switch for redundancy switch matrix applications. In: International conference on computing, electronics and electrical technologies (ICCEET), pp 501–508

  • Sukomal D, Shiban Koul K (2012) Design and development of a surface micro-machined push-pull-type true-time-delay phase shifter on an alumina substrate for Ka-band T/R module application. J Micromech Microeng 22(12):125006 (p 20)

    Article  Google Scholar 

  • Tan GL, Mihailovich RE, Hacker JB, DeNatale JF, Rebeiz GM (2002) A very-low-loss 2-bit X-band RF MEMS phase shifters. Microwave Symposium Digest, 2002. IEEE MTT-S International 1:333–335

    Google Scholar 

  • Tan GL, Mihailovich RE, Hacker JB, DeNatale JF, Rebeiz GM (2003) Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches. IEEE Trans Microw Theory Tech 51(1):297–304

    Article  Google Scholar 

  • Uno Y, Narise K, Masuda T, Inoue K, Adachi Y, Hosoya K, Seki T, Sato F (2009) Development of SPDT-structured RF MEMS switch. In: Proceeding of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems, pp 541–544

  • Yamane D, Sun W, Fujita H, Toshiyoshi H, Kawasaki S (2010) Development of a dual-SPDT RF-MEMS switch for Ku-band. In: IEEE Radio and Wireless Symposium (RWS), pp 432–435

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, D., Kumar, A., Sharma, A. et al. Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch. Microsyst Technol 21, 1047–1052 (2015). https://doi.org/10.1007/s00542-014-2238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2238-0

Keywords

Navigation