Skip to main content
Log in

Design of an electro-thermally actuated cell microgripper

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The study of cells mechanical properties is of great interest both in medicine and biology to recognize and prevent some diseases causing alterations in cellular behaviour and resistance. Biological micro electro-mechanical systems allow the application of extremely small and precise forces increasing, as a consequence, the number of results possible per experiment and the number of experiments that can be performed simultaneously. The presented work deals with the analysis of an electro-thermally actuated microgripper for single-cell manipulation. Specifications and targets impose several limitations and difficulties in micro manipulators design and these obstacles are even more important when the target of microgripping are biological particles (e.g. living cells). The main parameters that have to be taken into account while designing a cell micromanipulator are, aside from its actuation principle, its kinematics, its fingertips shape, its releasing strategy and its material biocompatibility. More specifically in thermal actuation also thermal stability, insulation and high temperature in the device have to be considered to ensure the cell’s integrity during its micromanipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen KN, Carlson K, Petersen DH, Mølhave K, Eichhorn V, Fatikow S, Bøggild P (2008) Electrothermal microgrippers for pick-and-place operations. Microelectron Eng 85:1128–1130

    Article  Google Scholar 

  • Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15

    Article  Google Scholar 

  • Chan B-D, Mateen F, Chang C-L, Icoz K, Savran CA (2012) A compact manually actuated micromanipulator. J Microelectromech Syst 21(1):7–9

    Article  Google Scholar 

  • Chen T, Sun L, Chen L, Rong W, Li X (2010) A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens Actuators A 158:320–327

    Article  Google Scholar 

  • Giouroudi I, Hötzendorfer H, Kosel J, Andrijasevic D, Brenner W (2008) Development of a microgripping system for handling of microcomponents. Precis Eng 32:148–152

    Article  Google Scholar 

  • Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19

    Article  Google Scholar 

  • Iamoni S, Somà A (2013) Design of cell microgripper and actuation strategy. In: Proceedings of SPIE, vol 8765

  • Ivanova K, Ivanov T, Badar A, Volland BE, Rangelow IW, Andrijasevic D, Sümecz F, Fischer S, Spitzbart M, Brenner W, Kostic I (2006) Thermally driven microgripper as a tool for micro assembly. Microelectron Eng 83:1393–1395

    Article  Google Scholar 

  • Keoschkerjan R, Wurmus H (2002) A novel microgripper with parallel movement of gripping arms. In: Proceedings of 8th International Conference on New Actuators, pp 321–324

  • Kohl M, Skrobanek KD (1998) Linear microactuators based on the shape memory effect. Sens Actuators A 70:104–111

    Article  Google Scholar 

  • Kohl M, Brevet B, Just E (2002) SMA microgrypper system. Sens Actuators A 97–98:646–652

    Article  Google Scholar 

  • Mohd NMZ, Bijan S, Yanling T (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264

    Article  MATH  Google Scholar 

  • Mousavi MMS, De Pasquale G, Somà A, Brusa E (2011) A novel SU-8 microgripper with external actuator for biological cells manipulation. In: Proceedings of DTIP, pp 356–361

  • Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A 133:218–224

    Article  Google Scholar 

  • Nguyen N-T, Ho S-S, Low CLN (2004) A polymeric microgripper with integrated thermal actuators. J Micromech Microeng 14:969–974

    Article  Google Scholar 

  • Ouyang PR, Tjiptoprodjo RC, Zhang WJ, Yang GS (2008) Micro-motion devices technology: the state of arts review. Int J Adv Manuf Technol 38:463–478

    Article  Google Scholar 

  • Thielicke E, Obermeier E (2000) Microactuators and their technologies. Mechatronics 10:431–455

    Article  Google Scholar 

  • Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023

    Article  Google Scholar 

  • Volland BE, Ivanova K, TZV Ivanov, Sarov Y, Guliyev E, Persaud A, Zöllner JP, Klett S, Kostic I, Rangelow IW (2007) Duo-action electro thermal micro gripper. Microelectron Eng 84:1329–1332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Iamoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iamoni, S., Somà, A. Design of an electro-thermally actuated cell microgripper. Microsyst Technol 20, 869–877 (2014). https://doi.org/10.1007/s00542-013-2065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2065-8

Keywords

Navigation