Skip to main content

Advertisement

Log in

Fabrication of bio-inspired composite coatings for titanium implants using the micro-dispensing technique

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Bio-inspired composite coating, which resembles the unique nano-structured composite bone tissue, is greatly needed in biomedical implant applications. The target of this coating is to create a continuous transition from tissue to implant surface, and modulate the biological response between the implant and host tissue. Our study on this bio-inspired composite coating is to fabricate organic–inorganic composite coatings (OICCs) and functionally graded coatings (FGCs). In this paper, a few commonly used coating methods have been evaluated on their capabilities on OICCs and FGCs fabrication. Compared with other available methods, the drop-on-demand (DoD) micro-dispensing technique enables us not only to flexibly fabricate multi-material coating at micron scale, but also to reliably construct multi-layer structures with varied material property distribution within a layer and/or among layers. This DoD micro-dispensing technique has been characterized based on three type of biomaterials (hydroxyapatite, titanium oxide and collagen) and dispensing parameters. The micro-fabrication process has been further investigated with regards to its capabilities on OICCs and FGCs. The fabricated samples on titanium substrate are characterized in terms of material distribution, adhesion, layer thickness and uniformity. The results show that the DoD micro-dispensing technique is capable to fabricate OICC and FGC samples in a single process. A comprehensive study on fabrication process and biological test will be conducted in the next stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arias JL, Mayor MB, Pou J, Leng Y, Leon B, Perez-Amor M (2003) Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24:3403–3408

    Article  Google Scholar 

  • Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A (2009) Deposition and investigation of functionally graded calcium phosphate coating on titanium. Acta Biomater 5(9):3563

    Article  Google Scholar 

  • Bernhardt R, Van den Dolder J, Bierbaum S, Beutner R, Scharnweber D, Jansen J (2005) Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR μCT and histology. Biomaterials 26(16):3009–3019

    Article  Google Scholar 

  • Cannillo V, Sola LLA (2008) Production and characterization of plasma-sprayed TiO2–hydroxyapatite functionally graded coatings. J Eur Ceram Soc 28(11):2161–2169

    Article  Google Scholar 

  • Chang R, Nam J, Sun W (2008) Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 14(2):157–166

    Article  Google Scholar 

  • Chang L, Thian ES, Sun J, Fuh JYH (2011) Synthesis and characterization of functionally-graded nano-hydroxyapatite/titania bioactive coating via drop-on-demand technique. In: Proceeding of international symposium on nano science and technology, Taiwan, pp 14–17

  • Choi JM, Kim HE, Lee IS (2000) Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21:469–473

    Article  Google Scholar 

  • De Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA (2008) Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res 25(10):2357–2369

    Article  Google Scholar 

  • Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231

    Article  Google Scholar 

  • Ding SJ (2003) Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/titanium composite coatings. Biomaterials 24(23):4233–4238

    Article  Google Scholar 

  • Du C, Schneider GB, Zaharias R, Abbott C, Seabold D, Stanford C, Moradian-Oldak J (2005) Apatite/amelogenin coating on titanium promotes osteogenic gene expression. J Dent Res 84:1070–1074

    Article  Google Scholar 

  • Fan Y, Duan K, Wang R (2005) A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials 26:1623–1632

    Article  Google Scholar 

  • Geesink RG (2002) Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res 395:53–65

    Article  Google Scholar 

  • Geibler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel KW (2000) Collagen type I-coating of Ti6Al4 V promotes adhesion of osteoblasts. J Biomed Mater Res 51:752–760

    Article  Google Scholar 

  • Hashimoto Y, Kawashima M, Hatanaka R, Kusunoki M, Nishikawa H, Hontsu S, Nakamura M (2008) Cytocompatibility of calcium phosphate coatings deposited by an ArF pulsed laser. J Mater Sci Mater Med 19:327–333

    Article  Google Scholar 

  • Hayakawa T, Yoshinari M, Kiba H, Yamamoto H, Nemoto K, Jansen JA (2002) Trabecular bone response to surface roughened and calcium phosphate (Ca–P) coated titanium implants. Biomaterials 23:1025–1031

    Article  Google Scholar 

  • Hempel U, Reinstorf A, Poppe M, Fischer U, Gelinsky M, Pompe W, Wenzel KW (2004) Proliferation and differentiation of osteoblasts on biocement D modified with collagen type I and citric acid. J Biomed Mater Res B 71:130–143

    Article  Google Scholar 

  • Hirota K, Nishihara K, Tanaka H (1993) Pressure sintering of apatite-collagen composite. Biomed Mater Eng 3(3):147–151

    Google Scholar 

  • Huang J, Jayasinghe SN, Best SM, Edirisinghe MJ, Brooks RA, Bonfield W (2004) Electrospraying of a nano-hydroxyapatite suspension. J Mater Sci 39:1029–1032

    Article  Google Scholar 

  • Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11(1):9–17

    Article  Google Scholar 

  • Kim HW, Kim HE, Salih V, Knowles JC (2005) Sol–gel modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. J Biomed Mater Res A 74:294–305

    Google Scholar 

  • Kretschmer J, Tille C, Ederer I (1997) A drop-on demand inkjet printhead for a wide range of applications. In: Proceeding international conference on digital printing technologies, Seattle, WA, pp 343–347

  • Kumar RR, Wang M (2001) Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett 55:133–137

    Article  Google Scholar 

  • Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  Google Scholar 

  • Lee EW, Phil GC, Janine O, Lawrence S (2003) Method and apparatus for preparing biomimetic scaffold US patent WO/2003/079985

  • Lee IS, Zhao BH, Lee GH, Choi SH, Chung SM (2007) Industrial application of ion beam assisted deposition on medical implants. Surf Coat Technol 201(9–11):5132–5137

    Article  Google Scholar 

  • Lickorish D, Ramshaw JA, Werkmeister JA, Glattauer V, Howlett CR (2004) Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res Part A 68A(1):19–27

    Article  Google Scholar 

  • Liu Y, Hunziker EB, Randall NX, de Groot K, Layrolle P (2003) Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials 24:65–70

    Article  Google Scholar 

  • Morra M, Cassinelli C, Meda L, Fini M, Giavaresi G, Giardino R (2005) Surface analysis and effects on interfacial bone microhardness of collagencoated titanium implants: a rabbit model. Int J Oral Maxillofac Implants 20(1):23–30

    Google Scholar 

  • Muller L, Conforto E, Caillard D, Muller FA (2007) Biomimetic apatite coatings -carbonate substitution and preferred growth orientation. Biomol Eng 24:462–466

    Article  Google Scholar 

  • Nakashima Y, Hayashi K, Inadome T, Uenoyama K, Hara T, Kanemaru T, Sugioka Y, Noda I (1997) Hydroxyapatite coating on titanium arc sprayed titanium implants. J Biomed Mater Res 35(3):287–298

    Article  Google Scholar 

  • Ozeki K, Yuhta T, Fukui Y, Aoki H, Nishimura I (2002) A functionally graded titanium/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 13(3):253–258

    Article  Google Scholar 

  • Rammelt S, Neumann M, Hanisch U, Reinstorf A (2005) Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J Biomed Mater Res A 73:284–294

    Google Scholar 

  • Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W (2006) Coating of titanium implants with collagen, RGD peptide and chondroitin sulphate. Biomaterials 27:5561–5571

    Article  Google Scholar 

  • Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A, Funk RHW (2001) Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs 168:178–187

    Article  Google Scholar 

  • Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A (2005) Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implant Res 16(5):563–569

    Article  Google Scholar 

  • Shi DL, Wen XJ (2006) Introduction to biomaterials: bioceramic processing, World Scientific publishing, 207–210

  • Teng SH, Lee EJ, Park CS, Choi WY, Shin DS, Kim HE (2008) Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates. J Mater Sci Mater Med 19:2453–2461

    Article  Google Scholar 

  • Thian ES, Huang J, Ahmad Z, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Best SM, Bonfield W (2008) Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response. J Biomed Mater Res A 85:188–194

    Google Scholar 

  • Uematsu I, Matsumoto H, Morota K, Minagawa M, Tanioka A, Yamagata Y, Inoue K (2004) Surface morphology and biological activity of protein thin films produced by electrospray deposition. J Colloid Interface Sci 269:336–340

    Article  Google Scholar 

  • Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cells Mater 11:43–56

    Google Scholar 

  • Walter D, Niles P, Coassin J (2005) Piezo- and solenoid valve-based liquid dispensing for miniaturized assays. Assay Drug Dev Technol 3(2):189–202

    Article  Google Scholar 

  • Wang D, Chen C, He T, Lei T (2008a) Hydroxyapatite coating on Ti6Al4 V alloy by a sol–gel method. J Mater Sci Mater Med 19:2281–2286

    Article  Google Scholar 

  • Wang H, Lin CJ, Hu R, Zhang F, Lin LW (2008b) A novel nano-micro structured octacalcium phosphate/protein composite coating on titanium by using an electrochemically induced deposition. J Biomed Mater Res Part A 87(3):698–705

    Article  Google Scholar 

  • Watari F, Yokoyama A, Saso F, Uo M, Matsuno H, Kawasaki T (1999) Biocompatibility of titanium/hydroxyapatite and titanium/cobalt functionally graded implants. Functionally Graded Materials. In: Kayser WA (ed) Materials Science Forum 308–311: 356–361

  • Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clinical Oral Implants Research 20(Suppl.4): 172–184

    Google Scholar 

  • Wolke JG, Van der Waerden JP, Schaeken HG, Jansen JA (2003) In vivo dissolution behavior of various RF magnetron sputtered Ca–P coatings on roughened titanium implants. Biomaterials 24:2623–2629

    Article  Google Scholar 

  • Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputter process—an alternative to plasma spraying. Biomaterials 26:327–337

    Article  Google Scholar 

Download references

Acknowledgments

This research project is sponsored by the Biomedical Engineering Programme, Agency for Science, Technology and Research (A*STAR), Singapore under the SERC Grant No: 103-149- 0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Thian, E.S., Fuh, J.Y.H. et al. Fabrication of bio-inspired composite coatings for titanium implants using the micro-dispensing technique. Microsyst Technol 18, 2041–2051 (2012). https://doi.org/10.1007/s00542-012-1531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1531-z

Keywords

Navigation