Skip to main content
Log in

Role of the electro-thermo-mechanical multiple coupling on the operation of RF-microswitch

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A phenomenological approach is proposed to identify some effects occurring within the structure of the microswitch conceived for radio frequency application. This microsystem is operated via a nonlinear electromechanical action imposed by the applied voltage. Unfortunately, it can be affected by residual stress, due to the microfabrication process, therefore axial and flexural behaviors are strongly coupled. This coupling increases the actuation voltage required to achieve the so-called “pull-in” condition. Moreover, temperature may strongly affect strain and stress distributions, respectively. Environmental temperature, internal dissipation of material, thermo-elastic and Joule effects play different roles on the microswitch flexural displacement. Sometimes buckling phenomenon evenly occurs. Literature show that all those issues make difficult an effective computation of “pull-in” and “pull-out” voltages or evenly distinguishing the origin of some failures detected in operation. Analysis, numerical methods and experiments are applied to an industrial test case to investigate step by step the RF-microswitch operation. Multiple electro-thermo-mechanical coupling is first modeled to have a preliminary and comprehensive description of the microswitch behavior and of its reliability. “Pull-in” and “pull-out” tests are then performed to validate the proposed models and to find suitable criteria to design the RF-MEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baek C, Kim Y, Ahn Y, Kim Y (2005) Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures. Sens Actuators A 117:17–27

    Article  Google Scholar 

  • Ballestra A, Brusa E, Munteanu MG, Somà A (2008) Experimental characterization of electrostatically actuated inplane bending of microcantilevers. Microsyst Technol 14(7):909–918

    Article  Google Scholar 

  • Bettini P, Brusa E, Munteanu MG, Specogna R, Trevisan F (2008) Static behaviour prediction of microelectrostatic actuators by discrete geometric approaches. IEEE Trans Magnetics 44(6):1606–1609

    Article  Google Scholar 

  • Bognar G, Szucs Z, Szekely V, Rencz M (2009) Contactless thermal characterization of high temperature test chamber. Microsyst Technol 15:1279–1285

    Article  Google Scholar 

  • Brusa E (2006) Dynamics of mechatronic systems at microscale in “Microsystem Mechanical Design”. Springer Verlag, CISM Lectures Series, pp 57–80

    Google Scholar 

  • Brusa E (2010) Design for reliability of micromechatronic structural system in micro electro mechanical systems, MEMS: technology, fabrication processes and applications. Nova Science Publisher Inc, Hauppauge

  • Brusa E, Munteanu M (2006a) Validation of compact models of microcantilever actuators for RF-MEMS application. Analog Integr Circuits Signal Process 59:191–199

    Article  Google Scholar 

  • Brusa E, Munteanu M (2006b) Coupled-field FEM nonlinear dynamics analysis of continuous microsystems by non incremental approach. Analog Integr Circuits Signal Process 48:7–14

    Article  Google Scholar 

  • Brusa E, Munteanu M (2011) Effect of electro-thermo-mechanical coupling on the short-circuit in RF microswitch operation. In Proceedings of SPIE Microtechnolgies 2011, 18–20 April 2011, Prague Czech Republic, Conf. “Smart Sensors, Actuator and MEMS V”, Vol 8066, ISNN 0277-786X, ISBN 9780819486554, pp 80660W1–80660W15

  • Brusa E, De Bona F, Gugliotta A, Somà A (2004) Modeling and prediction of the dynamic behaviour of microbeams under electrostatic load. Analog Integr Circuits Signal Process 40(2):155–164

    Article  Google Scholar 

  • Brusa E, De Pasquale G, Somà A (2010b) Characterization of thermo-mechanical coupling in gold microbridges. In: Proceedings of IEEE DTIP 2010, 5–7 May 2010, Sevilla, Spain, pp 344–34

  • Collard S M (1991) High temperature elastic constants of Gold single-crystals, Dissertation, Rice University, n.9136015, Houston, Texas

  • Collenz A, De Bona F, Gugliotta A, Somà A (2004) Large deflections of microbeams under electrostatic loads. J Micromech Microeng 14:365–373

    Article  Google Scholar 

  • Epp J, Surm H, Hirsch T, Hoffmann F (2011) Residual stress relaxation during heating of bearing rings produced in two different manufacturing chains. J Mater Process Technol 211:637–643

    Article  Google Scholar 

  • Espinosa HD, Zhu Y, Moldovan N (2006) MEMS-based material testing systems in “encyclopedia of materials: science and technology”. Elsevier, New York

    Google Scholar 

  • Goldsmith CL, Forehand DI (2005) Temperature variation of actuation voltage in capacitive MEMS switches. IEEE Microw Wirel Compon Lett 15(10):718–720

    Google Scholar 

  • Gupta RK, Gunda JB, Ranga JG, Venkateswara R (2008) Thermal post-buckling analysis of slender columns using the concept of coupled displacement field. Int J Mech Sci 52:590–594

    Article  Google Scholar 

  • Hasiang Pan C (2002) A simple method for determining linear thermal expansion coefficients of thin films. J Micromech Microeng 12:548–555

    Article  Google Scholar 

  • Jensen B D, Saitou K, Volakis J L and Kurabayashi K (2003) Fully integrated electrothermal multidomain modeling of RF MEMS switches, IEEE Microwave and wireless components letters, 13(9)

  • Jing Q (2003) Modeling and simulation for design of suspended MEMS, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania

  • Kang T, Kim JG, Lee JS, Lee JH, Hahn JH, Lee HY, Kim YH (2005) Low-thermal-budget and selective relaxation of stress gradients in gold micro-cantilever beams using ion implantation. J Micromech Microeng 15:2469–2478

    Article  Google Scholar 

  • Lin L, Chiao M (2000) Self-buckling of micromachined beams under resistive heating. J MEMS 9(1):146–151

    Google Scholar 

  • Mahameed R, Rebeiz G (2010) A high-power temperature-stable electrostatic RF MEMS capacitive switch based on a thermal buckle-beam design. J MEMS 19(4):816–826

    Google Scholar 

  • Margesin B, Bagolini A, Guarnieri V, Giacomozzi F, Faes A (2003) Stress characterization of electroplated gold layers for low temperature surface micromachining In: Proceedings of IEEE/DTIP 2003, Mandelieu-La Napoule, France, May 2003

  • Medvedeva A, Bergströmb J, Gunnarsson S, Krakhmalev P (2011) Thermally activated relaxation behaviour of shot-peened tool steels for cutting tool body applications. Mater Sci Eng A 528:1773–1779

    Article  Google Scholar 

  • Motro R (2010) Anthology of structural morphology. World Scientific, Singapore

    Google Scholar 

  • Mulloni V, Giacomozzi F, Margesin B (2010) Controlling stress and stress gradient during the release process in gold suspended micro-structures. Sens Actuators A 162:93–99

    Article  Google Scholar 

  • Nieminen H, Ermolov V, Silanto S, Nybergh K, Ryhänen T (2004) Design of a temperature-stable RF MEM capacitor. J MEMS 13(5):705–714

    Google Scholar 

  • Palego C, Deng J, Peng Z, Halder S, Hwang J, Forehand DI, Scarbrough D, Goldsmith CL, Johnston I, Sampath SI, Datta A (2009) Robustness of RF MEMS Capacitive Switches With Molybdenum Membranes. IEEE Trans Microw Theory Tech 57(12):3262–3269

    Google Scholar 

  • Rebeiz G (2002) RF MEMS: theory, design, and technology, Wiley Interscience, New York

  • Reid JR, Starman LA, Webster RT (2003) RF Actuation of Capacitive MEMS Switches. IEEE MTT-S Digest, paper TH2D-2

  • Rezvanian O, Brown C, Zikry MA, Kingon AI, Krim J, Irving DL, Brenner D (2008) The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices. J Applied Physics 104(2):024513:1–024513:5

    Google Scholar 

  • Rocha LA, Cretu E, Wolffenbuttel RF (2003) Stability of a micromechanical pull-in voltage reference. IEEE Trans, Inst Meas 52

    Google Scholar 

  • Sadek K, Lueke J, Moussa W (2009) A coupled field multiphysics modeling approach to investigate RF MEMS switch failure modes under various operational conditions. Sensors 9:7988–8006

    Article  Google Scholar 

  • Saeedivahdat A, Abdolkarimzadeh F, Feyzi A, Rezazadeh G, Tarverdilo S (2010) Effect of thermal stresses on stability and frequency response of a capacitive microphone. Microelectron J 41:865–873

    Article  Google Scholar 

  • Shamshirsaz M, Asgari MB (2008) Polysilicon microbeams buckling with temperature-dependent properties. Microsyst Technol 14:957–961

    Article  Google Scholar 

  • Somà A, De Pasquale G (2009) MEMS mechanical fatigue: experimental results on gold microbeams. J MEMS Trans ASME/IEEE 18:828–835

    Google Scholar 

  • Somà A, De Pasquale G, Brusa E (2010) Effect of residual stress on the mechanical behaviour of microswitches at pull-in threshold. Strain 46(4):358–373

    Article  Google Scholar 

  • Subhadeep K, Bagolini A, Margesin B, Zen M (2006) Stress and resistivity analysis of electrodeposited gold films for MEMS application. J Microelectron 37(11):1329–1334

    Article  Google Scholar 

  • Szabo P, Nemeth B, Rencz M (2009) Thermal transient characterisation of the etching quality of micro electro mechanical systems. Microelectron J 40:1042–1047

    Article  Google Scholar 

  • Tabata O, Tsuchiya T, Brand O, Fedder GK, Hierold C, Korvink JG (2008) Reliability of MEMS: testing of materials and devices, Wiley, Hoboken

  • Timoshenko S, Gere J (1961) Theory of elastic stability. McGraw Hill, Tokyo

    Google Scholar 

  • Veijola T et al (2009) Experimental validation of compact damping models of perforated MEMS devices. Microsys Technol 15(2):1121–1128

    Article  Google Scholar 

  • Yan X (2009) Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J MEMS 18(3):570–576

    Google Scholar 

  • Yan D, Yan X, Brown WL, Li Y, Papapolymerou J, Palego C, Hwang JCM, Vinci RP (2004) Design and modeling of a MEMS bidirectional vertical thermal actuator, J. Micromech Microeng 14:841–850

    Article  Google Scholar 

  • Zamanian M, Khadem SE (2010) Analysis of thermoelastic damping in microresonators by considering the stretching effect. Int J Mech Sci 52:1366–1375

    Article  Google Scholar 

  • Zhu Y, Espinosa HD (2004) Effect of temperature on capacitive RF MEMS switch performance a coupled-field analysis. J Micromech Microeng 14:1270–1279

    Article  Google Scholar 

Download references

Acknowledgments

Authors appreciate the fundamental contribution of Prof. Aurelio Somà and Dr. Giorgio De Pasquale in the experimental activity performed at the Laboratory of Design and Testing of Microsystems of Politecnico di Torino, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Brusa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusa, E., Munteanu, M.G. Role of the electro-thermo-mechanical multiple coupling on the operation of RF-microswitch. Microsyst Technol 18, 983–995 (2012). https://doi.org/10.1007/s00542-012-1426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1426-z

Keywords

Navigation