Skip to main content
Log in

Manufacturing process and thermal characterization of a fast temperature switching microdevice for real-time biological experiments

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Rapid switching and measurement of the temperature in a small volume of liquid are of paramount importance for the real-time observation of biomolecular events such as protein folding–unfolding or enzymatic reactions. We present a microthermodevice for high-speed biological measurements that combines a heater for fast temperature shifting (millisecond range) and a Thin Film Thermocouple (TFTC) for accurate temperature measurement during microscopic observation. Device manufacturing as well as its thermal characterization are shown. The device is successfully employed to measure the fluorescent quenching of double-stranded DNA coupled with fluorescent intercalator on millisecond time scale, thus demonstrating its capacity for innovative biological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. PNAS, pp 1247–2468

  • Arata H, Dupont A, Miné-Hattab J, Disseau L, Renodon-Cornière A, Takahashi M, Viovy JL, Cappello G (2009) Direct observation of twisting steps during Rad51 polymerization on DNA. Proc Natl Acad Sci 106(46):19239–19244

    Article  Google Scholar 

  • Arata HF, Fujita H (2009) Miniaturized thermocontrol devices enable analysis of biomolecular behavior on their timescales, second to millisecond. Integr Biol 1(5):363–370

    Article  Google Scholar 

  • Arata HF, Gillot F, Collard D, Fujita H (2009) Millisecond analysis of double stranded dna with fluorescent intercalator by micro-thermocontrol-device. Talanta 79(3):963–966

    Article  Google Scholar 

  • Arata HF, Gillot F, Nojima T, Fujii T, Fujita H (2008) Millisecond denaturation dynamics of fluorescent proteins revealed by femtoliter container on micro-thermodevices. Lab Chip 8(9):1436–1440

    Article  Google Scholar 

  • Arata HF, Noji H, Fujita H (2006) Motion control of single f 1 − atpase rotary biomolecular motor using microfabricated local heating devices. Appl Phys Lett 88(8):3902–3903

    Article  Google Scholar 

  • Arata HF, Rondelez Y, Noji H, Fujita H (2005) Temperature alternation by an on-chip microheater to reveal enzymatic activity of beta-galactosidase at high temperatures. Anal Chem 77(15):4810–4814

    Article  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  Google Scholar 

  • Belgrader P, Young S, Yuan B, Primeau M, Christel LA, Pourahmadi F, Northrup MA (2001) A battery-powered notebook thermal cycler for rapid multiplex real-time pcr analysis. Anal Chem 73(2):286–289

    Article  Google Scholar 

  • Bohr MT (2002) Nanotechnology goals and challenges for electronic applications. IEEE Trans Nanotechnol 1(1):56–62

    Article  MathSciNet  Google Scholar 

  • Brewer LR, Bianco PR (2008) Laminar flow cells for single-molecule studies of dna-protein interactions. Nat Methods 5(6):517–525

    Article  Google Scholar 

  • Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393

    Article  Google Scholar 

  • Fumio O, Akira M, Yasuyuki T, Takaoki S, Hiroji O, Mitsuo Y, Tsunetoshi A (2004) 65 nm-node cmos process for low power devices. IEICE 104(249)

  • Galletto R, Amitani I, Baskin RJ, Kowalczykowski CJ (2006) Direct observation of individual reca filaments assembling on single DNA molecules. Nature 443:875–878

    Article  Google Scholar 

  • Gao YL, Zhuravlev E, Zou CD, Yang B, Zhai QJ, Schick C (2009) Calorimetric measurements of undercooling in single micron sized snagcu particles in a wide range of cooling rate. Thermochimica Acta 482(1):1–7

    Article  Google Scholar 

  • Gillot F, Morin FO, Arata HF, Guegan R, Tanaka H, Fujita H (2007) On chip thermal calibration with 8cb liquid crystal of micro-thermal device for biological applications. Lab Chip 7(1):1600–1602

    Article  Google Scholar 

  • Keem K, Jeong DY, Kim S, Lee MS, Yeo IS, Chung UI, Moon JT (2006) Fabrication and device characterization of omega-shaped-gate zno nanowire field-effect transistors. Nano Lett 6(7):1454–1458

    Article  Google Scholar 

  • Lagally ET, Medintz I, Mathies RA (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73(3):565–570

    Article  Google Scholar 

  • Majumdar A, Lai J, Chandrachood M, Nakabeppu O, Wu Y, Shi Z (1995) Thermal imaging by atomic-force microscopy using thermocouple cantilever probes. Rev Sci Inst 66(6):3584–3592

    Article  Google Scholar 

  • Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 mk/s. Rev Sci Inst 78(7):3902–12

    Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Article  Google Scholar 

  • Sato K, Hibara A, Tokeshi M, Hisamoto H, Kitamori T (2003) Microchip-based chemical and biochemical analysis systems. Adv Drug Deliv Rev 55(3):379–391

    Article  Google Scholar 

  • Sharma D, MacDonald JC, Iannacchione GS (2006) Thermodynamics of activated phase transitions of 8cb: Dsc and mc calorimetry. J Phys Chem B 110(33):6679–1668

    Article  Google Scholar 

  • Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996) The elasticity of a single supercoiled DNA molecule. Science 271(5257):1835–1837

    Article  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Ann Rev Biophys Biomol Struct 23(1):247–285

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Gillot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillot, F., Arata, H.F., Morin, F.O. et al. Manufacturing process and thermal characterization of a fast temperature switching microdevice for real-time biological experiments. Microsyst Technol 16, 1821–1824 (2010). https://doi.org/10.1007/s00542-010-1095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1095-8

Keywords

Navigation