Skip to main content
Log in

Dynamic actuation and sensing micro-device for mechanical response of cultured adhesive cells

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

As one of the cellular responses to external mechanical stimulation, it is presumable that the cell adjusts the cytoskeletal mechanical strength globally as well as locally. However, the methodologies to validate this hypothesis are extremely limited and expensive. In this study, a new micro device, utilizing dynamic response of a piezoelectric vibrator, is developed, which works not only to evaluate local mechanical property, but also to enforce local mechanical stimulation onto cultured living adhesive cells. Experimental studies have been carried out by applying actin (the major component of cytoskeleton) polymerization inhibitor, cytochalasin D, to normal human osteoblast. The studies show the present device’s sensing capability to detect changes of mechanical property, induced by external mechanical stimulation, of cultured normal human osteoblast. Also, the method shows that the cellular response against static and dynamic mechanical stimulation differs depending on the condition of actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi T, Murai T, Hoshiai S, Tomita Y (2001) Effect of actin filament on deformation-induced Ca2+ response in osteoblast-like cells. JSME Int J C 44(4):914–919

    Article  Google Scholar 

  • Adachi T, Sato K, Higashi N, Tomita Y, Hojo M (2007) Simultaneous observation of calcium signaling response and membrane deformation due to localized mechanical stimulus in single osteoblast-like cells. J Mech Behav Biomed Mater 1:43–50. doi:10.1016/j.jmbbm.2007.06.003

    Article  Google Scholar 

  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2007) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch Eur J Physiol 456:211–225. doi:10.1007/s00424-007-0406-0

    Google Scholar 

  • Davies JA (2005) Cell migration: the nano-machinery of locomotion. In: Mechanisms of morphogenesis: the creation of biological form. Elsevier, Burlington, pp 103–117

    Google Scholar 

  • Fukunaga T, Kurata K, Matsuda J, Higaki H (2008) Effects of strain magnitude on mechanical responses of three-dimensional gel-embedded osteocytes studied with a novel 10-well elastic chamber. J Biomech Sci Eng 3(1):13–24. doi:10.1299/jbse.3.13

    Article  Google Scholar 

  • Kaspar D, Seidl W, Neidlinger-Wilke C, Beck A, Claes L, Ignatius A (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35:873–880. doi:10.1016/S0021-9290(02)00058-1

    Article  Google Scholar 

  • Konno K, Kosawada T, Akutsu M (2006) Three-dimensional micro actuator and sensor system for dynamic stimulations and evaluations of mechanical properties of minute living cells. J Biomech Sci Eng 1(1):147–158. doi:10.1299/jbse.1.147

    Article  Google Scholar 

  • Konno K, Kosawada T, Endo N, Sasaki R (2007) Recovery assisting system for locally damaged egg cell by using three-dimensional micro vibration devices. Asia Pacific Vibration Conference OS02-2-1:12 pp in CD-ROM

  • Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2008) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27:800–806. doi:10.1002/jor.20814

    Article  Google Scholar 

  • Kosawada T, Konno K, Yamamura S, Kanazawa T (2005) Piezo micro probe sensor system to detect environmental stresses induced in living cells and tissues. Microsyst Technol 11:943–949. doi:10.1007/s00542-005-0562-0

    Article  Google Scholar 

  • Kreja L, Liedert A, Hasni S, Claes L, Ignatius A (2008) Mechanical regulation of osteoclastic genes in human osteoblasts. Biomech Biophys Res Commun 368:582–587. doi:10.1016/j.bbrc.2008.01.106

    Article  Google Scholar 

  • Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833. doi:10.1016/j.micron.2007.06.011

    Article  Google Scholar 

  • Loh O, Vaziri A, Espinosa HD (2007) The potential of MEMS for advancing experiments and modeling in cell mechanics. Exp Mech 49:105–124. doi:10.1007/s11340-007-9099-8

    Article  Google Scholar 

  • Mogilner A, Oster G (1996) Cell motility driven by actin polymerization. Biophys J 71:3030–3045

    Article  Google Scholar 

  • Murayama Y, Constantinou CE, Omata S (2003) Micro-mechanical sensing platform for the characterization of the elastic properties of the ovum via uniaxial measurement. J Biomech 37:67–72. doi:10.1016/s0021-9290(03)00242-2

    Article  Google Scholar 

  • Omata S (1996) Development of micro tactile sensor for detecting stiffness of cell using piezoelectric element and applications. Tech Digest 14th Sensor Symp 203–206

  • Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S (2007) Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 41:1095–1103. doi:10.1016/j.jbiomech.2007.11.024

    Article  Google Scholar 

  • Sato K, Adachi T, Ueda D, Hojo M, Tomita Y (2006) Measurement of local strain on cell membane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells. J Biomech 40:1246–1255. doi:10.1016/j.jbiomech.2006.05.028

    Article  Google Scholar 

  • Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51:5881–5905. doi:10.1016/j.actamat.2003.09.001

    Article  Google Scholar 

  • Wang QG, Magnay JL, Nguyen B, Thomas CR, Zhang Z, El Haj AJ, Kuiper NJ (2008) Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Bioch Biophys Res Commun 379:738–742. doi:10.1016/j.bbrc.2008.12.111

    Article  Google Scholar 

  • Yang S, Saif MTA (2006) MEMS based force sensors for the study of indentation response of single living cells. Sens Actuators A 135:16–22. doi:10.1016/j.sna.2006.05.019

    Google Scholar 

  • Yang S, Saif MTA (2007) Force response and actin remodeling (agglomeration) in fibroblasts due to lateral indentation. Acta Biomater 3:77–87. doi:10.1016/j.actbio.2006.07.005

    Article  Google Scholar 

  • You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR (2007) Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42:172–179. doi:10.1016/j.bone.2007.09.047

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from JSPS grant-in-Aid for Scientific Research, No. (B)19360106, and by the 23-rd Nakatani Foundation of Electronic Measuring Technology Advancement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Kosawada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konno, Ki., Kosawada, T., Suzuki, M. et al. Dynamic actuation and sensing micro-device for mechanical response of cultured adhesive cells. Microsyst Technol 16, 993–1000 (2010). https://doi.org/10.1007/s00542-010-1076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1076-y

Keywords

Navigation