Skip to main content
Log in

In-situ electromechanical testing and loading system for dynamic cell-biomaterial interaction study

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The mechanical and electrical properties of biomaterials are essential in cell function regulation during cell-biomaterial interaction. However, previous studies focused on probing cell regulation mechanisms under one type of stimulus, and a platform that enables the study of electromechanical coupling effects of a biomaterial on cells is still lacking. Here, we present an in-situ electromechanical testing and loading system to image live cells when co-cultured with electroactive biomaterials. The system can provide accurate and repeatable stretch on biomaterials and cells to mimic in vivo tension microenvironment. Besides, the integrated displacement transducer, force sensor, and electrical signal detector enable the real time detection of electromechanical signals on electroactive biomaterials under various stretch loading. Combined with a microscope, live cell imaging can be realized to probe cell behavior. The feasibility of the system is validated by culturing mesenchymal stem cells on piezoelectric nanofiber and conductive hydrogel. Experiment results show the device as a reliable and accurate tool to investigate electromechanical properties of biomaterials and probe essential features of live cells. Our system provides a way to correlate cell behavior with electromechanical cues directly and is useful for exploration of cell function during cell-biomaterial interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • J.C. Anderson, C. Eriksson, Nature 227, 491 (1970)

    Article  Google Scholar 

  • B.M. Baker, B. Trappmann, W.Y. Wang, M.S. Sakar, I.L. Kim, V.B. Shenoy, J.A. Burdick, C.S. Chen, Nat. Mater. 14, 1262 (2015)

    Article  Google Scholar 

  • S. Bose, M. Roy, A. Bandyopadhyay, Trends Biotechnol. 30, 546 (2012)

    Article  Google Scholar 

  • P. Dan, É. Velot, V. Decot, P. Menu, J. Cell Sci. 124, 2415 (2015)

    Article  Google Scholar 

  • H.M. Estabridis, A. Jana, A. Nain, D.J. Odde, Ann. Biomed. Eng. 46, 392 (2018)

    Article  Google Scholar 

  • X. Gou, C.H. Ho, S. Hu, A.Y.H. Leung, D. Sun, IEEE Transact. Biomed. Eng. 60, 2308 (2013)

    Article  Google Scholar 

  • X. Gou, H. Yang, T.M. Fahmy, Y. Wang, D. Sun, Int. J. Robot. Res. 33, 1782 (2014)

    Article  Google Scholar 

  • C. Halperin, S. Mutchnik, A. Agronin, M. Molotskii, P. Urenski, M. Salai, G. Rosenman, Nano Lett. 4, 1253 (2004)

    Article  Google Scholar 

  • D.S. Howe, J. Dunning, C. Zorman, S.L. Garverick, K.M. Bogie, Ann. Biomed. Eng. 43, 306 (2015)

    Article  Google Scholar 

  • J. Huang, X. Hu, L. Lu, Z. Ye, Q. Zhang, Z. Luo, J. Biomed. Mater. Res. A 93, 164 (2010)

    Google Scholar 

  • J. Imsirovic, T.J. Wellman, J.R. Mondoñedo, E. Bartolák-Suki, B. Suki, PLoS One 10, e0140283 (2015)

    Article  Google Scholar 

  • J. Jacob, N. More, K. Kalia, G. Kapusetti, Inflamm. Regener. 38, 2 (2018)

    Article  Google Scholar 

  • J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Biomaterials 30, 4325 (2009)

    Article  Google Scholar 

  • L. Liu, Z. You, H. Yu, L. Zhou, H. Zhao, X. Yan, D. Li, B. Wang, L. Zhu, Y. Xu, T. Xia, Y. Shi, C. Huang, W. Hou, Y. Du, Nat. Mater. 16, 1252 (2017)

    Article  Google Scholar 

  • A. Llucià-Valldeperas, B. Sanchez, C. Soler-Botija, C. Gálvez-Montón, C. Prat-Vidal, S. Roura, J. Rosell-Ferrer, R. Bragos, A. Bayes-Genis, J. Tissue Eng. Regen. Med. 9, E76 (2015)

    Article  Google Scholar 

  • M.R. Love, S. Palee, S.C. Chattipakorn, N. Chattipakorn, J. Cell. Physiol. 233, 1860 (2017)

    Article  Google Scholar 

  • L. Lu, D. Fan, B.X. Bie, X.X. Ran, M.L. Qi, N. Parab, J.Z. Sun, H.J. Liao, M.C. Hudspeth, B. Claus, K. Fezzaa, T. Sun, W. Chen, X.L. Gong, S.N. Luo, Rev. Sci. Instrum. 85, 076101 (2014)

    Article  Google Scholar 

  • S. Meng, M. Rouabhia, Z. Zhang, Bioelectromagnetics 34, 189 (2013)

    Article  Google Scholar 

  • C. Ning, Z. Zhou, G. Tan, Y. Zhu, C. Mao, Prog. Polym. Sci. 81, 144 (2018)

    Article  Google Scholar 

  • Q. Pang, J.W. Zu, G.M. Siu, R.-K. Li, J. Biomech. Eng. 132, 014503 (2010)

    Article  Google Scholar 

  • A. Pavesi, G. Adriani, M. Rasponi, I.K. Zervantonakis, G.B. Fiore, R.D. Kamm, Sci. Rep. 5, 11800 (2015)

    Article  Google Scholar 

  • C. Ribeiro, V. Sencadas, D.M. Correia, S. Lanceros-Méndez, Colloids Surf. B: Biointerfaces 136, 46 (2015)

    Article  Google Scholar 

  • N.J. Steinmetz, E.A. Aisenbrey, K.K. Westbrook, H.J. Qi, S.J. Bryant, Acta Biomater. 21, 142 (2015)

    Article  Google Scholar 

  • G. Thrivikraman, S.K. Boda, B. Basu, Biomaterials 150, 60 (2018)

    Article  Google Scholar 

  • G. Thrivikraman, G. Madras, B. Basu, Biomaterials 35, 6219 (2014)

    Article  Google Scholar 

  • C.P. Ursekar, S.-K. Teo, H. Hirata, I. Harada, K.-H. Chiam, Y. Sawada, PLoS One 9, e90665 (2014)

    Article  Google Scholar 

  • N. Wang, J.D. Tytell, D.E. Ingber, Nat. Rev. Mol. Cell Bio. 10, 75 (2009)

    Article  Google Scholar 

  • Y. Wu, L. Wang, B. Guo, P.X. Ma, ACS Nano 11, 5646 (2017)

    Article  Google Scholar 

  • B. Zhang, H. Li, L. He, Z. Han, T. Zhou, W. Zhi, X. Lu, X. Lu, J. Weng, Mater. Sci. Eng. C 89, 355 (2018)

    Article  Google Scholar 

  • W. Zhang, P. Feng, J. Chen, Z. Sun, B. Zhao, Prog. Polym. Sci. 88, 220 (2019)

    Article  Google Scholar 

  • Z. Zhang, Y. Wang, H. Zhang, Z. Tang, W. Liu, Y. Lu, Z. Wang, H. Yang, W. Pang, H. Zhang, D. Zhang, X. Duan, Small 13, 1602962 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Sichuan Science and Technology Program (2019YJ0246) and the Fundamental Research Funds for the Central Universities (2682019CX07).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lingda Meng, Guilan Xue, Qingjie Liu and Tianpeng Xie. The first draft of the manuscript was written by Lingda Meng and Xue Gou. All authors commented on previous versions of the manuscript, and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Duan Fan or Xue Gou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Xue, G., Liu, Q. et al. In-situ electromechanical testing and loading system for dynamic cell-biomaterial interaction study. Biomed Microdevices 22, 56 (2020). https://doi.org/10.1007/s10544-020-00514-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00514-3

Keywords

Navigation