Skip to main content
Log in

Analysis of the friction processes in ultrasonic wedge/wedge-bonding

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Research on wire bonding, the most common chip interconnection technology, has been done for over 40 years by now. The most common description is a model of three phases: friction, approach and interdiffusion (Lang 1988; Osterwald 1999). To quantify this model, with the main aspect at the duration of the friction phase, ultrasonic oscillation was filmed with a high speed camera. A pulsed LED light-source allowed very short exposure times of 2 μs. For the first time it was possible to make the movement of the wire visible in a reflected light exposure. After the friction phase, the end of friction (EOF) occurs. Laser vibration measurements of the tool and the pad amplitude turned out that the EOF correlates with a second, characteristic plateau of the pad amplitude. At this time, the tool amplitude has already shown its characteristic maximum and was attenuated to approximately 80% of the maximum value. After the EOF, when the wedge is bonded to the pad, a bending of the wire towards the wedge in the heel region was observed. This is a possible reason for a weakening of the heel by the US-power. While a change of the wire texture could be proved in recent investigations (Geißler et al. 2006), the exposure of the heel to reverse bending cycle was never verified before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.izm.fhg.de/fhg/Images/Video-22-Auflicht-p150-200avi_tcm357-114973.MPG; http://www.drahtbonden.de/bondmodell/files/video-auflicht.mpg

References

  • Amro R (2006) Power cycling capability of advanced packaging and interconnection technologies at high temperature swings. Dissertation, Betreut von J. Lutz, A. Lindemann und Reinhold Bayerer. Chemnitz. TU Chemnitz, Fakultät für Elektrotechnik und Informatik

  • Gaul H, Schneider-Ramelow M, Lang K-D, Reichl H (2006) Predicting the shear strength of a wire bond using laser vibration measurements. ESTC 2006, Dresden, pp S719–S725

  • Gaul H, Schneider-Ramelow M, Reichl H (2007) Hochgeschwindigkeitsaufnahmen der Werkzeug- und Drahtschwingung beim US-Wedge/Wedge-Bonden. In: Produktion von Leiterplatten und Systemen, H. 8, pp 1529–1534

  • Geißler U, Schneider-Ramelow M, Lang K-D, Reichl H (2006) Investigation of microstructural processes during ultrasonic wedge/wedge bonding of AlSi1 wires. J Electron Mater, Jg. 35, H. 1, S173–S179

  • Harman GG (1978) The microelectronic wire bond pull test—how to use it, how to abuse it. IEEE Trans Components, Hybrids and Manuf Technol, CHMT-1(3), pp S203–S209

    Google Scholar 

  • Lang K-D (1988) Qualitätssicherung im Zyklus II der Herstellung elektronischer Bauelemente am Beispiel des Drahtbondens. Dissertation, B Humboldt Universität

  • Mayer M, Schwizer J (2003) Thermosonic ball bonding model based on ultrasonic friction power. Electronics Packaging Technology Conference, Singapore, pp S738–S743

  • Meyyappan KN (2004) Failure prediction of wire bonds due to flexure. Phd-Thesis, University of Maryland

  • Osterwald F (1999) Verbindungsbildung beim Ultraschall-Drahtbonden—Einfluß der Schwingungsparameter und Modellvorstellungen. Dissertation, TU Berlin

Download references

Acknowledgments

The Authors like to thank Leica Microsystems GmbH for the loan of a Z16APO-A microscope, and Osram GmbH, which provided the Platinum Dragon® power LEDs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Gaul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaul, H., Schneider-Ramelow, M. & Reichl, H. Analysis of the friction processes in ultrasonic wedge/wedge-bonding. Microsyst Technol 15, 771–775 (2009). https://doi.org/10.1007/s00542-009-0811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0811-8

Keywords

Navigation