Skip to main content
Log in

Wafer direct bonding with ambient pressure plasma activation

  • Technical paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Ambient pressure plasma processes were applied for surface activation of semiconductor (Si, Ge and GaAs) and other wafers (glass) before direct wafer bonding for MEMS and engineered substrates. Surface properties of activated wafers were analysed. Caused by activation high bond energies were obtained for homogeneous (e.g. Si/Si) as well as for heterogeneous material combinations (for instance Si/Ge) after a subsequent low temperature annealing process at 200°C. The resulting bond energies are analogous or higher as obtained for low-pressure plasma activation processes. The advantages of the ambient pressure plasma processes are described; a technical solution is discussed demonstrating the low risk for contamination and radiation damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SSOI:

Strained silicon-on-insulator

SOI:

Silicon-on-insulator

MEMS:

Micro-electro-mechanical-system

CMOS:

Complementary metal oxide semiconductor

GeOI:

Germanium-on-insulator

AP:

Ambient pressure plasma

LP:

Low-pressure plasma

PE-CVD:

Plasma enhanced chemical vapour deposition

DBD:

Dielectric barrier discharge

SAM:

Scanning acoustic microscopy

AFM:

Atomic force microscopy

References

  • Alexe M, Dragoi V, Reiche M, Gösele U (2000) Electron Lett 36:677

    Article  Google Scholar 

  • Baravian G, Chaleix D, Choquet P, Nauche PL, Puech V, Rozoy M (1999) Surf Cat Technol 155:66

    Article  Google Scholar 

  • Eliasson B, Kogelschatz U (1991) Modelling and applications of silent discharge plasmas. IEEE Trans Plasma Sci 19:309–323

    Article  Google Scholar 

  • Farrens SN, Dekker JR, Smith JK, Roberds BE (1995) J Electrochem Soc 142:3949

    Article  Google Scholar 

  • Kissinger G, Kissinger W (1993) Sens Actuators A36:149

    Article  Google Scholar 

  • Klages C-P, Eichler M (2002) Vakuum in Forschung Praxis 14:149

    Article  Google Scholar 

  • Niklaus F, Enoksson P, Griß P, Kälvesten E, Stemme G (2001) IEEE J Microelectromec Syst 10:525

    Article  Google Scholar 

  • Sanz-Velasco A (2002) The RDGT-integration of micromechanics and electronics by plasma assisted wafer bonding. PhD Thesis, Chalmers University, Göteborg

  • Steinkirchner J, Martini T, Reiche M, Kästner G, Gösele U (1995) Adv Mater 7:662

    Article  Google Scholar 

  • Thyen R, Höpfner K, Kläke N, Klages C-P (2000) In: Proceedings of the international symposium on high pressure and low temperature plasma chemistry (HAKONE VII), Greifswald

  • Weichel S, de Reus R, Lindahl M (1998) Sens Actuators A70:179

    Article  Google Scholar 

  • Wiegand M (2001) Effect of a plasma treatment on the properties of low-temperature wafer bonding of single-crystalline silicon. PhD Thesis, University of Halle

  • Wiegand M, Reiche M, Gösele U (2000) J Electrochem Soc 147:2734

    Article  Google Scholar 

  • Zucker O, Langheinrich W, Kulozik M, Goebel H (1993) Sens Actuators A36:227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Gabriel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, M., Johnson, B., Suss, R. et al. Wafer direct bonding with ambient pressure plasma activation. Microsyst Technol 12, 397–400 (2006). https://doi.org/10.1007/s00542-005-0044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-005-0044-4

Keywords

Navigation