Skip to main content
Log in

Pharmacokinetics of intraperitoneal and subcutaneous levobupivacaine in anesthetized rats

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

We compared the pharmacokinetics of levobupivacaine when administered intraperitoneally, subcutaneously, and intravenously in an anesthetized rat model, to estimate the toxicity risk of a local anesthetic when absorbed from the peritoneum.

Methods

Thirty-two rats were anesthetized with sevoflurane. In Experiment 1, we administered 5.0 mg/kg of levobupivacaine intraperitoneally (IP) (n = 7), subcutaneously (SC) (n = 6), or intravenously (IV) (n = 6). In Experiment 2, we administered 2.5 mg/kg of levobupivacaine IP (n = 7) or SC (n = 6). Data are shown as median [range] of Experiment 1.

Results

In either of experiments, the time to reach maximum plasma concentration of levobupivacaine was shorter in the IP group than in the SC group (IP: 2 [2–5] min; SC: 5 [2–10] min; P = 0.04), and the maximum concentration of levobupivacaine did not differ between the IP and SC groups (IP: 0.45 [0.05–0.67] µg/mL; SC: 0.47 [0.21–0.62] µg/mL; P = 0.90). The area under the curve from time 0 to 120 min after levobupivacaine administration was significantly higher in the SC group than in the IP group in both experiments (IP: 0.29 [0.10–0.54] mg h/L; SC: 0.78 [0.39–0.98] mg h/L; P = 0.04).

Conclusion

Levobupivacaine is rapidly absorbed following IP administration, but its maximum plasma concentration within 2 h following IP administration is no statistical difference as that following SC administration. On the other hand, when levobupivacaine is given subcutaneously, Tmax can exceed 1 h, so we need to be aware of local anesthetic toxicity during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sites BD, Taenzer AH, Herrick MD, Gilloon C, Antonakakis J, Richins J, Beach ML. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: an analysis from a prospective clinical registry. Reg Anesth Pain Med. 2012;37:478–82.

    Article  CAS  Google Scholar 

  2. Barrington MJ, Watts SA, Gledhill SR, Thomas RD, Said SA, Suyder GL, Tay VS, Jamrozik K. Preliminary results of the Australasian Regional Anaesthesia Collaboration: a prospective audit of more than 7000 peripheral nerve and plexus blocks for neurologic and other complications. Reg Anesth Pain Med. 2009;34:534–41.

    Article  Google Scholar 

  3. Aydin G. Unexpected local anesthesia toxicity during the ultrasonography-guided peripheral nerve block. J Clin Anesth. 2018;50:26.

    Article  Google Scholar 

  4. Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med. 2004;29:564–75.

    CAS  PubMed  Google Scholar 

  5. Griffiths JD, Barron FA, Grant S, Bjorksten AR, Hebbard P, Royse CF. Plasma ropivacaine concentrations after ultrasound-guided transversus abdominis plane block. Br J Anaesth. 2010;105:853–6.

    Article  CAS  Google Scholar 

  6. Rafi AN. Abdominal field block: a new approach via the lumbar triangle. Anaesthesia. 2001;56:1024–6.

    CAS  PubMed  Google Scholar 

  7. McDermott G, Korba E, Mata U, Jaigirdar M, Narayanan N, Boylan J, Conlon N. Should we stop doing blind transversus abdominis plane blocks? Br J Anaesth. 2012;108:499–502.

    Article  CAS  Google Scholar 

  8. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.

    Article  Google Scholar 

  9. Lim CK, Lord G. Current developments in LC-MS for pharmaceutical analysis. Biol Pharm Bull. 2002;25:547–57.

    Article  CAS  Google Scholar 

  10. Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm. 1978;6:547–58.

    Article  CAS  Google Scholar 

  11. Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther. 1971;178:562–4.

    CAS  PubMed  Google Scholar 

  12. Myers CE, Collins JM. Pharmacology of intraperitoneal chemotherapy. Cancer Investig. 1983;1:395–407.

    Article  CAS  Google Scholar 

  13. Narchi P, Benhamou D, Bouaziz H, Fernandez H, Mazoit JX. Plasma concentrations of local anaesthetics following intraperitoneal administration during laparoscopy. Eur J Clin Pharmacol. 1992;42:223–5.

    Article  CAS  Google Scholar 

  14. Pond SM, Tozer TN. First-pass elimination. Basic concepts and clinical consequences. Clin Pharmacokinet. 1984;9:1–25.

    Article  CAS  Google Scholar 

  15. Williams R, White H. The greater omentum: its applicability to cancer surgery and cancer therapy. Curr Probl Surg. 1986;23:789–865.

    Article  CAS  Google Scholar 

  16. Surbone A, Myers CE. Principles and practice of intraperitoneal therapy. Antibiot Chemother. 1971;1988(40):14–25.

    Google Scholar 

  17. Bruck R, Krepel Z, Bar-Meir S. Cimetidine and omeprazole have different effects on hepatic extraction of lidocaine in rats. Gastroenterology. 1990;99:857–9.

    Article  CAS  Google Scholar 

  18. Ikeda Y, Oda Y, Nakamura T, Takahashi R, Miyake W, Hase I, Asada A. Pharmacokinetics of lidocaine, bupivacaine, and levobupivacaine in plasma and brain in awake rats. Anesthesiology. 2010;112:1396–403.

    Article  CAS  Google Scholar 

  19. Ala-Kokko TI, Löppönen A, Alahuhta S. Two instances of central nervous system toxicity in the same patient following repeated ropivacaine-induced brachial plexus block. Acta Anaesthesiol Scand. 2000;44:623–6.

    Article  CAS  Google Scholar 

  20. Müller M, Litz RJ, Hüler M, Albrecht DM. Grand mal convulsion and plasma concentrations after intravascular injection of ropivacaine for axillary brachial plexus blockade. Br J Anaesth. 2001;87:784–7.

    Article  Google Scholar 

  21. Chazalon P, Tourtier JP, Villevielle T, Giraud D, Saïssy JM, Mion G, Benhamou D. Ropivacaine-induced cardiac arrest after peripheral nerve block: successful resuscitation. Anesthesiology. 2003;99:1449–51.

    Article  Google Scholar 

  22. Griffiths JD, Le NV, Grant S, Bjorksten A, Hebbard P, Royse C. Symptomatic local anaesthetic toxicity and plasma ropivacaine concentrations after transversus abdominis plane block for Caesarean section. Br J Anaesth. 2013;110:996–1000.

    Article  CAS  Google Scholar 

  23. Ishida T, Sakamoto A, Tanaka H, Ide S, Ishida K, Tanaka S, Mori T, Kawamata M. Transversus abdominis plane block with 0.25 % levobupivacaine: a prospective, randomized, double-blinded clinical study. J Anesth. 2015;29:557–61.

    Article  Google Scholar 

  24. Lacassie HJ, Rolle A, Cortínez LI, Solari S, Corvetto MA, Altermatt FR. Pharmacokinetics of levobupivacaine with epinephrine in transversus abdominis plane block for postoperative analgesia after Caesarean section. Br J Anaesth. 2018;121:469–75.

    Article  CAS  Google Scholar 

  25. Copeland S, Ladd L, Gu X, Mather L. The effects of general anesthesia on the central nervous and cardiovascular system toxicity of local anesthetics. Anesth Analg. 2008;106:1429–39.

    Article  CAS  Google Scholar 

  26. Englesson S. The influence of acid-base changes on central nervous system toxicity of local anaesthetic agents. I. An experimental study in cats. Acta Anaesthesiol Scand. 1974;18:79–87.

    Article  CAS  Google Scholar 

  27. Ohmura S, Kawada M, Ohta T, Yamamoto K, Kobayashi T. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats. Anesth Analg. 2001;93:743–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the staff of the animal experiment facilities of Hiroshima University for their kind assistance. We also express our appreciation to the Maruishi Pharmaceutical Co., Ltd. for the measurement of the blood concentration of levobupivacaine.

Funding

The authors have no sources of funding to declare for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotsugu Miyoshi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyoshi, H., Kato, T., Nakamura, R. et al. Pharmacokinetics of intraperitoneal and subcutaneous levobupivacaine in anesthetized rats. J Anesth 35, 168–174 (2021). https://doi.org/10.1007/s00540-020-02883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-020-02883-8

Keywords

Navigation