Skip to main content
Log in

Levobupivacaine absorption pharmacokinetics with and without epinephrine during TAP block: analysis of doses based on the associated risk of local anaesthetic toxicity

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cases of local anaesthetic systemic toxicity (LAST) periodically occur following transversus abdominal plane (TAP) blocks. The aim of this study was to characterize levobupivacaine absorption pharmacokinetics, with and without epinephrine, and estimate the risk of LAST, based on a previously reported toxic threshold.

Methods

Previously reported data from 11 volunteers receiving ultrasound-guided TAP blocks with and without epinephrine on two independent occasions were analysed. Serial venous concentrations were measured for 90 min. A pharmacokinetic analysis was performed using the NONMEM statistical programme. The use of epinephrine in the solution was included in the analysis of covariates. The associated risk of LAST symptoms associated with different levobupivacaine dose schemes with and without epinephrine was estimated in 1000 simulated subjects.

Results

A one-compartment first-order input and elimination model adequately fit the levobupivacaine data. Epinephrine prolonged the levobupivacaine absorption half-life {4.22 [95 % confidence interval (CI) 2.53–6.50] vs. 7.02 [95 % CI 3.74–14.1]; p < 0.05} and reduced its relative bioavailability (0.84; 95 % CI 0.72–0.97; p < 0.05) The derived model predicts that levobupivacaine dose schemes should be halved from 3 mg kg−1 body weight with epinephrine to 1.5 mg kg−1 without epinephrine to obtain a comparable risk of anaesthetic toxicity symptoms of approximately 0.1 %.

Conclusions

Our results strongly support the addition of epinephrine to the local anaesthetic solution, especially when doses of levobupivacaine of >1.5 mg kg−1 are required. Recommendations regarding the maximum allowable doses of local anaesthetics should consider population analysis to determine safer dosage ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdallah FW, Chan VW, Brull R (2012) Transversus abdominis plane block: a systematic review. Reg Anesth Pain Med 37(2):193–209. doi:10.1097/AAP.0b013e3182429531

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths JD, Barron FA, Grant S et al (2010) Plasma ropivacaine concentrations after ultrasound-guided transversus abdominis plane block. Br J Anaesth. doi:10.1093/bja/aeq255

    Google Scholar 

  3. Kato N, Fujiwara Y, Harato M et al (2009) Serum concentration of lidocaine after transversus abdominis plane block. J Anesth 23(2):298–300. doi:10.1007/s00540-008-0721-4

    Article  PubMed  Google Scholar 

  4. Torup H, Mitchell AU, Breindahl T et al (2012) Potentially toxic concentrations in blood of total ropivacaine after bilateral transversus abdominis plane blocks; a pharmacokinetic study. Eur J Anaesthesiol 29(5):235–238. doi:10.1097/EJA.0b013e328350b0d5

    Article  CAS  PubMed  Google Scholar 

  5. Weiss E, Jolly C, Dumoulin JL et al (2014) Convulsions in 2 patients after bilateral ultrasound-guided transversus abdominis plane blocks for cesarean analgesia. Reg Anesth Pain Med 39(3):248–251. doi:10.1097/AAP.0000000000000088

    Article  CAS  PubMed  Google Scholar 

  6. Naidu RK, Richebe P (2013) Probable Local anesthetic systemic toxicity in a postpartum patient with acute fatty liver of pregnancy after a transversus abdominis plane block. A&A Case Rep 1(5):72–4. doi:10.1097/ACC.0b013e3182973a2f

  7. Corvetto MA, Echevarria GC, De La Fuente N et al (2012) Comparison of plasma concentrations of levobupivacaine with and without epinephrine for transversus abdominis plane block. Reg Anesth Pain Med 37(6):633–637. doi:10.1097/AAP.0b013e31826c330a

    Article  CAS  PubMed  Google Scholar 

  8. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic-pharmacodynamic models. I Models for covariate effects. J Pharmacokinet Biopharm 20:511–528

    Article  CAS  PubMed  Google Scholar 

  9. Bardsley H, Gristwood R, Baker H et al (1998) A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 46(3):245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karlsson MO, Sheiner LB (1993) The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 21(6):735–750

    Article  CAS  PubMed  Google Scholar 

  11. Chalkiadis GA, Abdullah F, Bjorksten AR et al (2013) Absorption characteristics of epidural levobupivacaine with adrenaline and clonidine in children. Paediatr Anaesth 23(1):58–67. doi:10.1111/pan.12074

    Article  PubMed  Google Scholar 

  12. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276(5309):122–126

    Article  CAS  PubMed  Google Scholar 

  13. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75

    Article  Google Scholar 

  14. Cortinez LI, Anderson BJ, Holford NH (2015) Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol 71(12):1501–1508

  15. Eleveld DJ, Proost JH, Absalom AR et al (2011) Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet 50(11):751–753. doi:10.2165/11594080-000000000-00000. Discussion 55–6

    Article  CAS  PubMed  Google Scholar 

  16. Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332. doi:10.1146/annurev.pharmtox.48.113006.094708

    Article  CAS  PubMed  Google Scholar 

  17. Anderson BJ, Holford NH (2009) Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 24(1):25–36

    Article  CAS  PubMed  Google Scholar 

  18. Peeters MY, Allegaert K, Blusse van Oud-Alblas HJ et al. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet 49(4):269–275

  19. Rafi AN (2001) Abdominal field block: a new approach via the lumbar triangle. Anaesthesia 56(10):1024–1026

    Article  CAS  PubMed  Google Scholar 

  20. Lahlou-Casulli M, Chaize - Avril C, Pouliquen E et al (2015) The median effective analgesic dose (ED50) of ropivacaine in ultrasound-guided transversus abdominis plane block for analgesia in reversal of ileostomy: a double-blind up-down dose-finding study. Eur J Anaesthesiol 32(9):640–644

    Article  CAS  PubMed  Google Scholar 

  21. Chalkiadis GA, Eyres RL, Cranswick N et al (2004) Pharmacokinetics of levobupivacaine 0.25% following caudal administration in children under 2 years of age. Br J Anaesth 92(2):218–222

    Article  CAS  PubMed  Google Scholar 

  22. Karmakar MK, Ho AM, Law BK et al (2005) Arterial and venous pharmacokinetics of ropivacaine with and without epinephrine after thoracic paravertebral block. Anesthesiology 103(4):704–711

    Article  CAS  PubMed  Google Scholar 

  23. Krishnan S, Morris RG, Hewett PJ et al (2014) A randomized double-blind clinical trial of a continuous 96-hour levobupivacaine infiltration after open or laparoscopic colorectal surgery for postoperative pain management—including clinically important changes in protein binding. Ther Drug Monit 36(2):202–210. doi:10.1097/FTD.0b013e3182a3772e

    Article  CAS  PubMed  Google Scholar 

  24. McLean AJ, Le Couteur DG (2004) Aging biology and geriatric clinical pharmacology. Pharmacol Rev 56(2):163–184. doi:10.1124/pr.56.2.4

    Article  CAS  PubMed  Google Scholar 

  25. Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 64(12):1147–1161. doi:10.1007/s00228-008-0553-z

    Article  CAS  PubMed  Google Scholar 

  26. Verbeeck RK, Musuamba FT (2009) Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol 65(8):757–773. doi:10.1007/s00228-009-0678-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

PM wrote and planned the study, analysed the data and wrote the paper; AA wrote and planned the study and analysed the data; MAC wrote and planned the study and performed the research; GCE wrote and planned the study and performed the statistical analyses; LIC: wrote and planned the study, analysed the data and wrote the paper; FRA conceived the study, wrote and planned the study, analysed the data, and wrote the paper. All authors drafted and approved the final manuscript. The content is solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando R. Altermatt.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Funding

This work was supported by a Research Fund, División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile.

Additional information

ClinicalTrials.gov identifier: NCT01596998

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, P., Corvetto, M.A., Altermatt, F.R. et al. Levobupivacaine absorption pharmacokinetics with and without epinephrine during TAP block: analysis of doses based on the associated risk of local anaesthetic toxicity. Eur J Clin Pharmacol 72, 1221–1227 (2016). https://doi.org/10.1007/s00228-016-2086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2086-1

Keywords

Navigation