Skip to main content
Log in

Monitoring cerebral tissue oxygen saturation at frontal and parietal regions during carotid artery stenting

  • Clinical Report
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Cerebral oximetry is normally placed on the upper forehead to monitor the frontal lobe cerebral tissue oxygen saturation (SctO2). We present a case in which the SctO2 was simultaneously monitored at both frontal and parietal regions during internal carotid artery (ICA) stenting. Our case involves a 79-year-old man who presented after a sudden fall and was later diagnosed with a watershed ischemic stroke in the distal fields perfused by the left middle cerebral artery. He had diffuse atherosclerotic occlusive lesions in the carotid and cerebral arterial systems including an 85 % stenotic lesion in the left distal cervical ICA. The brain territory perfused by the left ICA was devoid of collateral flow from anterior and posterior communicating arteries due to an abnormal circle of Willis. During stenting, the SctO2 monitored at both frontal and parietal regions tracked the procedure-induced acute flow change. However, the baseline SctO2 values of frontal and parietal regions differed. The SctO2–MAP correlation was more consistent on the stroked hemisphere than the non-stroked hemisphere. This case showed that SctO2 can be reliably monitored at the parietal region, which is primarily perfused by the ICA. SctO2 of the stroked brain is more pressure dependent than the non-stroked brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  2. Kochanek KD, Xu J, Murphy SL, Miniño AM, Kung HC. Deaths: final data for 2009. Natl Vital Stat Rep. 2011;60:1–116.

    PubMed  Google Scholar 

  3. Torvik A. The pathogenesis of watershed infarcts in the brain. Stroke. 1984;15:221–3.

    Article  CAS  PubMed  Google Scholar 

  4. Momjian-Mayor I, Baron JC. The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke. 2005;36:567–77.

    Article  PubMed  Google Scholar 

  5. Bijker JB, Gelb AW. Review article: the role of hypotension in perioperative stroke. Can J Anaesth. 2013;60:159–67.

    Article  PubMed  Google Scholar 

  6. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV, American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular and Stroke Nursing, Council on Epidemiology and Prevention, Council on Peripheral Vascular Disease, Council on Nutrition, Physical Activity and Metabolism. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:2064–89.

    Article  PubMed  Google Scholar 

  7. Takeda N, Fujita K, Katayama S, Tamaki N. Cerebral oximetry for the detection of cerebral ischemia during temporary carotid artery occlusion. Neurol Med Chir. 2000;40:557–62.

    Article  CAS  Google Scholar 

  8. Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.

    Article  PubMed  Google Scholar 

  10. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198–208.

    Article  PubMed  Google Scholar 

  11. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009;103(Suppl. 1):i3–13.

    Article  PubMed  Google Scholar 

  12. Meng L, Cannesson M, Alexander BS, Yu Z, Kain ZN, Cerussi AE, Tromberg BJ, Mantulin WW. Effect of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients. Br J Anaesth. 2011;107:209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank CAS Medical Systems, Inc., Branford, CT, USA, for providing the FORE-SIGHT ELITE Tissue Oximeter at no cost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhong Meng.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Funding sources

The work was supported by the Inaugural Anesthesia Department Awards for Seed Funding for Clinically-Oriented Research Projects from the Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA (to Dr. Meng).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Hall, M., Settecase, F. et al. Monitoring cerebral tissue oxygen saturation at frontal and parietal regions during carotid artery stenting. J Anesth 30, 340–344 (2016). https://doi.org/10.1007/s00540-015-2117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-015-2117-6

Keywords

Navigation