Skip to main content

Advertisement

Log in

Probing the molecular mechanisms of neuronal degeneration: importance of mitochondrial dysfunction and calcineurin activation

  • Invited Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Cerebral injury is a critical aspect of the management of patients in intensive care. Pathological conditions induced by cerebral ischemia, hypoxia, head trauma, and seizure activity can result in marked residual impairment of cerebral function. We have investigated the potential mechanisms leading to neuronal cell death in pathological conditions, with the aim of discovering therapeutic targets and methods to minimize neuronal damage resulting from insults directed at the central nervous system (CNS). Over the years, deeper understanding of the mechanisms of neuronal cell death has indeed evolved, enabling clinical critical care management to salvage neurons that are at the brink of degeneration and to support recovery of brain function. However, no substantial breakthrough has been achieved in the quest to develop effective pharmacological neuroprotective therapy directed at tissues of the CNS. The current situation is unacceptable, and preservation of function and protection of the brain from terminal impairment will be a vital medical issue in the twenty-first century. To achieve this goal, it is critical to clarify the key mechanisms leading to neuronal cell death. Here, we discuss the importance of the calcineurin/immunophilin signal transduction pathway and mitochondrial involvement in the detrimental chain of events leading to neuronal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keep MF, Uchino H, Elmér E. Introduction: immunosuppressants as neuroprotective agents. In: Borlongan CVIO, Sanberg PR, editors. Immunosuppressant analogs in neuroprotection. Totowa: Humana Press; 2002. p. 3–32.

    Google Scholar 

  2. Li PA, Uchino H, Elmér E, Siesjo BK. Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res. 1997;753:133–140.

    PubMed  CAS  Google Scholar 

  3. Siesjo BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB, Uchino H. Role and mechanisms of secondary mitochondrial failure. Acta Neurochir Suppl. 1999;73:7–13.

    PubMed  CAS  Google Scholar 

  4. Uchino H, Elmér E, Uchino K, Li PA, He QP, Smith ML, Siesjo BK. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 1998;812:216–226.

    PubMed  CAS  Google Scholar 

  5. Uchino H, Elmér E, Uchino K, Lindvall O, Siesjö BK. Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol Scand. 1995;155:469–471.

    Article  PubMed  CAS  Google Scholar 

  6. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjo BK, Shibasaki F. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002;10:219–233.

    PubMed  CAS  Google Scholar 

  7. Uchino H, Morota S, Takahashi T, Ikeda Y, Kudo Y, Ishii N, Siesjo BK, Shibasaki F. A novel neuroprotective compound FR901459 with dual inhibition of calcineurin and cyclophilins. Acta Neurochir Suppl. 2006;96:157–162.

    PubMed  CAS  Google Scholar 

  8. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233–249.

    PubMed  CAS  Google Scholar 

  9. Friberg H, Wieloch T. Mitochondrial permeability transition in acute neurodegeneration. Biochimie. 2002;84:241–250.

    PubMed  CAS  Google Scholar 

  10. Kroemer G. The mitochondrial permeability transition pore complex as a pharmacological target. An introduction. Curr Med Chem. 2003;10:1469–1472.

    PubMed  CAS  Google Scholar 

  11. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Lett. 2004;567:96–102.

    PubMed  CAS  Google Scholar 

  12. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blalchy-Dyson E, Di Lisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273:2077–2099.

    PubMed  CAS  Google Scholar 

  13. Wieloch T, Mattiasson G, Hansson M, Elmér E. Mitochondrial permeability transition in the CNS. Composition, regulation, and pathophysiological relevance. In: Gibson GE, Dienel GA, editors. Handbook of neurochemistry and molecular neurobiology brain energetics: integration of molecular and cellular processes, 3rd edn. Berlin Heidelberg Tokyo New York: Springer-Verlag; 2007. p. 667–702.

    Google Scholar 

  14. Lim C, Alexander MP, LaFleche G, Schnyer DM, Verfaellie M. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–1778.

    PubMed  CAS  Google Scholar 

  15. Meyer NJ, Hall JB. Brain dysfunction in critically ill patients—the intensive care unit and beyond. Critical Care (London, England). 2006;10:223.

    Google Scholar 

  16. Popp E, Bottiger BW. Cerebral resuscitation: state of the art, experimental approaches and clinical perspectives. Neurol Clin. 2006;24:73–87.

    PubMed  Google Scholar 

  17. Siesjo BK, Siesjo P. Mechanisms of secondary brain injury. Eur J Anaesthesiol. 1996;13:247–268.

    PubMed  CAS  Google Scholar 

  18. Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Cur Opin Neurol. 2002;15:707–712.

    Google Scholar 

  19. Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. Head Trauma Rehabil. 2005;20:76–94.

    Google Scholar 

  20. Hansen-Schwartz J. Cerebral vasospasm: a consideration of the various cellular mechanisms involved in the pathophysiology. Neurocrit Care. 2004;1:235–246.

    PubMed  CAS  Google Scholar 

  21. Janardhan V, Biondi A, Riina HA, Sanelli PC, Stieg PE, Gobin YP. Vasospasm in aneurysmal subarachnoid hemorrhage: diagnosis, prevention, and management. Neuroimaging Clin N Am. 2006;16:483–496.

    PubMed  Google Scholar 

  22. Janjua N, Mayer SA. Cerebral vasospasm after subarachnoid hemorrhage. Curr Opin Crit Care. 2003;9:113–119.

    PubMed  Google Scholar 

  23. Wu CT, Wong CS, Yeh CC, Borel CO. Treatment of cerebral vasospasm after subarachnoid hemorrhage—a review. Acta Anaesthesiol Taiwan. 2004;42:215–222.

    PubMed  Google Scholar 

  24. Gray F, Adle-Biassette H, Chretien F, Lorin de la Grandmaison G, Force G, Keohane C. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol. 2001;20:146–155.

    PubMed  CAS  Google Scholar 

  25. Kaul M, Lipton SA. Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J Neuroimmune Pharmacol. 2006;1:138–151.

    PubMed  Google Scholar 

  26. Mallucci G, Collinge J. Update on Creutzfeldt-Jakob disease. Current Opin Neur. 2004;17:641–647.

    Google Scholar 

  27. Manuelidis L. Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann N Y Acad Sci. 1994;724:259–281.

    PubMed  CAS  Google Scholar 

  28. Mori I, Kimura Y. Neuropathogenesis of influenza virus infection in mice. Microbes Infect. 2001;3:475–479.

    PubMed  CAS  Google Scholar 

  29. Chen JW, Naylor DE, Wasterlain CG. Advances in the pathophysiology of status epilepticus. Acta Neurol Scand. 2007;186:7–15.

    CAS  Google Scholar 

  30. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab. 2005;25:1557–1572.

    PubMed  CAS  Google Scholar 

  31. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. Br J Nutrition. 2000;130(4S Suppl):1007S–1015S.

    CAS  Google Scholar 

  32. Kirino T. Delayed neuronal death. Neuropathology. 2000;20 (Suppl):S95–S97.

    PubMed  Google Scholar 

  33. Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience. 1991;40:599–636.

    PubMed  CAS  Google Scholar 

  34. Siesjo BK. Mechanisms of ischemic brain damage. Crit Care Med. 1988;16:954–963.

    Article  PubMed  CAS  Google Scholar 

  35. Sims NR. Energy metabolism and selective neuronal vulnerability following global cerebral ischemia. Neurochem Res. 1992;17:923–931.

    PubMed  CAS  Google Scholar 

  36. Wieloch T. Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res. 1985;63:69–85.

    PubMed  CAS  Google Scholar 

  37. Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjo BK. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A two-vessel occlusion model. Acta Neurol Scand. 1984;69:385–401.

    PubMed  CAS  Google Scholar 

  38. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–725.

    PubMed  CAS  Google Scholar 

  39. Baron JC, Marchal G. Ischemic core and penumbra in human stroke. Stroke. 1999;30:1150–1153.

    PubMed  CAS  Google Scholar 

  40. Fisher M, Garcia JH. Evolving stroke and the ischemic penumbra. Neurology. 1996;47:884–888.

    PubMed  CAS  Google Scholar 

  41. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci. 1987;14:557–559.

    PubMed  CAS  Google Scholar 

  42. Obrenovitch TP. The ischaemic penumbra: 20 years on. Cerebrovasc Brain Metabol Rev. 1995;7:297–323.

    CAS  Google Scholar 

  43. Pestalozza IF, Di Legge S, Calabresi M, Lenzi GL. Ischaemic penumbra: highlights. Clin Exp Hypertens. 2002;24:517–529.

    PubMed  Google Scholar 

  44. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 2007;27:1129–1136.

    PubMed  Google Scholar 

  45. Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23:1261–1276.

    PubMed  CAS  Google Scholar 

  46. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–397.

    PubMed  CAS  Google Scholar 

  47. Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 2003;3:65–94.

    PubMed  CAS  Google Scholar 

  48. Halestrap AP. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999;66:181–203.

    PubMed  CAS  Google Scholar 

  49. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci. 2005;1047:248–258.

    PubMed  CAS  Google Scholar 

  50. Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003;304:463–470.

    PubMed  CAS  Google Scholar 

  51. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004;61:372–385.

    PubMed  CAS  Google Scholar 

  52. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 2005;79:231–239.

    PubMed  CAS  Google Scholar 

  53. Rieke GK, Sampson HW, Scarfe AD, Bowers DE. The toxin kainic acid: a study of avian nerve and glial cell response utilizing tritiated kainic acid and electron microscopic autoradiography. Acta Neuropathol. 1988;76:185–203.

    PubMed  CAS  Google Scholar 

  54. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A. 2005;102:12005–12010.

    PubMed  CAS  Google Scholar 

  55. Schneider MD. Cyclophilin D: knocking on death’s door. Sci STKE. 2005;287:26.

    Google Scholar 

  56. Hansson MJ, Mansson R, Mattiasson G, Ohlsson J, Karlsson J, Keep MF, Elmér E. Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition. J Neurochem. 2004;89:715–729.

    PubMed  CAS  Google Scholar 

  57. Hansson MJ, Mattiasson G, Mansson R, Karlsson J, Keep MF, Waldmeier P, Ruegg UT, Dumont JM, Besseghir K, Elmér E. The nonimmunosuppressive cyclosporin analogs NIM811 and UNIL025 display nanomolar potencies on permeability transition in brain-derived mitochondria. J Bioenerg Biomembr. 2004;36:407–413.

    PubMed  CAS  Google Scholar 

  58. Hansson MJ, Persson T, Friberg H, Keep MF, Rees A, Wieloch T, Elmér E. Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria. Brain Res. 2003;960:99–111.

    PubMed  CAS  Google Scholar 

  59. Mori Y, Tokutate Y, Oana F, Matsuzawa A, Akahane S, Tajima N. Bezafibrate-induced changes over time in the expression of uncoupling protein (UCP) mRNA in the tissues: a study in spontaneously type 2 diabetic rats with visceral obesity. J Atheroscler Thromb. 2004;11:224–231.

    PubMed  CAS  Google Scholar 

  60. Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. 2004;36:257–264.

    PubMed  CAS  Google Scholar 

  61. Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol. 2002;35:67–86.

    PubMed  CAS  Google Scholar 

  62. Zipfel GJ, Babcock DJ, Lee JM, Choi DW. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma. 2000;17:857–869.

    PubMed  CAS  Google Scholar 

  63. Paschen W. Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res Bull. 2000;53:409–413.

    PubMed  CAS  Google Scholar 

  64. Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29:705–718.

    PubMed  CAS  Google Scholar 

  65. Siesjo BK. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab. 1981;1:155–185.

    PubMed  CAS  Google Scholar 

  66. Wieloch T, Siesjo BK. Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol (Paris). 1982;30:269–277.

    CAS  Google Scholar 

  67. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–1568.

    PubMed  CAS  Google Scholar 

  68. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33.

    PubMed  CAS  Google Scholar 

  69. Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 2000;23:166–174.

    PubMed  CAS  Google Scholar 

  70. Crompton M, Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978;91:599–608.

    PubMed  CAS  Google Scholar 

  71. Crompton M, Kunzi M, Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977;79:549–558.

    PubMed  CAS  Google Scholar 

  72. Rossi CS, Lehninger AL. Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J Biol Chem. 1964;239:3971–3980.

    PubMed  CAS  Google Scholar 

  73. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970;170:404–412.

    PubMed  CAS  Google Scholar 

  74. Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem. 2003;278:19062–19070.

    PubMed  CAS  Google Scholar 

  75. Lehninger AL, Carafoli E, Rossi CS. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320.

    PubMed  CAS  Google Scholar 

  76. Zoccarato F, Nicholls D. The role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria. Eur J Biochem. 1982;127:333–338.

    PubMed  CAS  Google Scholar 

  77. Nicholls DG, Scott ID. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J. 1980;186:833–839.

    PubMed  CAS  Google Scholar 

  78. Wang GJ, Thayer SA. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol. 1996;76:1611–1621.

    PubMed  CAS  Google Scholar 

  79. Rottenberg H, Marbach M. Regulation of Ca2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention. Biochim Biophys Acta. 1990;1016:87–98.

    PubMed  CAS  Google Scholar 

  80. Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab. 1989;9:2–19.

    PubMed  CAS  Google Scholar 

  81. Veech RL, Lawson JW, Cornell NW, Krebs HA. Cytosolic phosphorylation potential. J Biol Chem. 1979;254:6538–6547.

    PubMed  CAS  Google Scholar 

  82. Friberg H, Connern C, Halestrap AP, Wieloch T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J Neurochem. 1999;72:2488–2497.

    PubMed  CAS  Google Scholar 

  83. Mattiasson G, Friberg H, Hansson M, Elmer E, Wieloch T. Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J Neurochem. 2003;87:532–544.

    PubMed  CAS  Google Scholar 

  84. Knoll G, Brdiczka D. Changes in freeze-fractured mitochondrial membranes correlated to their energetic state. Dynamic interactions of the boundary membranes. Biochim Biophys Acta. 1983;733:102–110.

    PubMed  CAS  Google Scholar 

  85. Crompton M, Barksby E, Johnson N, Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie. 2002;84:143–152.

    PubMed  CAS  Google Scholar 

  86. Brustovetsky N, Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry. 1996;35:8483–8488.

    PubMed  CAS  Google Scholar 

  87. Brustovetsky N, Tropschug M, Heimpel S, Heidkamper D, Klingenberg M. A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore. Biochemistry. 2002;41:11804–11811.

    PubMed  CAS  Google Scholar 

  88. Halestrap AP, Davidson AM. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990;268:153–160.

    PubMed  CAS  Google Scholar 

  89. Beutner G, Ruck A, Riede B, Welte W, Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996;396:189–195.

    PubMed  CAS  Google Scholar 

  90. Beutner G, Ruck A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998;1368:7–18.

    PubMed  CAS  Google Scholar 

  91. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–662.

    PubMed  CAS  Google Scholar 

  92. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem. 2005;280:18558–18561.

    PubMed  CAS  Google Scholar 

  93. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427:461–465.

    PubMed  CAS  Google Scholar 

  94. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–658.

    PubMed  CAS  Google Scholar 

  95. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biol. 2007;9:550–555.

    PubMed  CAS  Google Scholar 

  96. Nicholls DG, Scott ID. The role of mitochondria in the regulation of calcium ion transport in synaptosomes. Biochem Soc Trans. 1980;8:264–266.

    PubMed  CAS  Google Scholar 

  97. Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P. Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochim Biophys Acta. 2006;1757:590–595.

    PubMed  CAS  Google Scholar 

  98. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990;258:C755–C786.

    PubMed  CAS  Google Scholar 

  99. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241:139–176.

    PubMed  Google Scholar 

  100. Brustovetsky N, Brustovetsky T, Purl KJ, Capano M, Crompton M, Dubinsky JM. Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J Neurosci. 2003;23:4858–4867.

    PubMed  CAS  Google Scholar 

  101. Kristal BS, Staats PN, Shestopalov AI. Biochemical characterization of the mitochondrial permeability transition in isolated forebrain mitochondria. Dev Neurosci. 2000;22:376–383.

    PubMed  CAS  Google Scholar 

  102. Kristian T, Bernardi P, Siesjo BK. Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. J Neurotrauma. 2001;18:1059–1074.

    PubMed  CAS  Google Scholar 

  103. Panov AV, Andreeva L, Greenamyre JT. Quantitative evaluation of the effects of mitochondrial permeability transition pore modifiers on accumulation of calcium phosphate: comparison of rat liver and brain mitochondria. Arch Biochem Biophys. 2004;424:44–52.

    PubMed  CAS  Google Scholar 

  104. Morota S, Hansson MJ, Ishii N, Kudo Y, Elmer E, Uchino H. Spinal cord mitochondria display lower calcium retention capacity compared with brain mitochondria without inherent differences in sensitivity to cyclophilin D inhibition. J Neurochem. 2007;103:2066–2076.

    PubMed  CAS  Google Scholar 

  105. Schonfeld P, Reiser G. Ca2+ storage capacity of rat brain mitochondria declines during the postnatal development without change in ROS production capacity. Antioxid Redox Signal. 2007;9:191–199.

    PubMed  Google Scholar 

  106. Vinogradov A, Scarpa A, Chance B. Calcium and pyridine nucleotide interaction in mitochondrial membranes. Arch Biochem Biophys. 1972;152:646–654.

    PubMed  CAS  Google Scholar 

  107. Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976;251:5069–5077.

    PubMed  CAS  Google Scholar 

  108. Dargel R. Effect of Ca2+ on coupling of rat liver mitochondria. FEBS Lett. 1974;42:57–60.

    PubMed  CAS  Google Scholar 

  109. D’Amours D, Desnoyers S, D’silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342:249–268.

    PubMed  CAS  Google Scholar 

  110. Wang JH, Desai R. A brain protein and its effect on the Ca2+-and protein modulator-activated cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1976;72:926–932.

    PubMed  CAS  Google Scholar 

  111. Yakel JL. Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci. 1997;18:124–134.

    PubMed  CAS  Google Scholar 

  112. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991;66:807–815.

    PubMed  CAS  Google Scholar 

  113. Morioka M, Hamada J, Ushio Y, Miyamoto E. Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol. 1999;58:1–30.

    PubMed  CAS  Google Scholar 

  114. Clemens JA. Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radic Biol Med. 2000;28:1526–1531.

    PubMed  CAS  Google Scholar 

  115. Shibasaki F, Kondo E, Akagi T, McKeon F. Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature. 1997;386:728–731.

    PubMed  CAS  Google Scholar 

  116. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999;284:339–343.

    PubMed  CAS  Google Scholar 

  117. Sharkey J, Butcher SP. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature. 1994;371:336–339.

    PubMed  CAS  Google Scholar 

  118. Waldmeier PC, Zimmermann K, Qian T, Tintelnot-Blomley M, Lemasters JJ. Cyclophilin D as a drug target. Curr Med Chem. 2003;10:1485–1506.

    PubMed  CAS  Google Scholar 

  119. Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N. Calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem. 2006;281:37547–37558.

    PubMed  CAS  Google Scholar 

  120. Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED. Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol. 2008;209:243–253.

    PubMed  CAS  Google Scholar 

  121. Ravikumar R, McEwen ML, Springer JE. Post-treatment with the cyclosporin derivative, NIM811, reduced indices of cell death and increased the volume of spared tissue in the acute period following spinal cord contusion. J Neurotrauma. 2007;24:1618–1630.

    PubMed  Google Scholar 

  122. Korde AS, Pettigrew LC, Craddock SD, Pocernich CB, Waldmeier PC, Maragos WF. Protective effects of NIM811 in transient focal cerebral ischemia suggest involvement of the mitochondrial permeability transition. J Neurotrauma. 2007;24:895–908.

    PubMed  Google Scholar 

  123. McEwen ML, Sullivan PG, Springer JE. Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats. J Neurotrauma. 2007;24:613–624.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Commercial declaration: author E.E. is founder of Maas BiolAB, LLC, and NeuroVive Pharmaceutical AB (formerly named NeuroPharma AB), which hold intellectual property rights and develop the use of cyclosporins for neurological treatment.

This review article was invited by the Editorial Board members of the Journal of Anesthesia and was peer-reviewed as were the other articles in this journal.

About this article

Cite this article

Uchino, H., Kuroda, Y., Morota, S. et al. Probing the molecular mechanisms of neuronal degeneration: importance of mitochondrial dysfunction and calcineurin activation. J Anesth 22, 253–262 (2008). https://doi.org/10.1007/s00540-008-0617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-008-0617-3

Key words

Navigation