Skip to main content

Advertisement

Log in

N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Epigenetic modification occurring in RNA has become the hotspot of the field. N6-methyladenosine (m6A) methylation is the most abundant RNA internal modification mainly occurring at the consensus motif DR (m6A) CH (D = A/G/U, R = A/G, H = A/C/U) in the 3’-UTR particularly the region near stop codons. The life cycle of m6A methylation includes “writers,” “erasers,” and “readers”, which are responsible for the addition, removal, and recognition of m6A, respectively. m6A modification has been reported changing RNA secondary structure or modulating the stability, localization, transport, and translation of mRNAs to play crucial roles in various physiological and pathological conditions. Liver, as the largest metabolic and digestive organ, modulates vital physiological functions, and its dysfunction gives rise to the occurrence of various diseases. Despite the advanced intervening measures, mortality due to liver diseases is continuously high. Recent studies have explored the roles of m6A RNA methylation in the pathogenesis of liver diseases, providing new insights for studying the molecular mechanism of liver diseases. In the review, we extensively summarize the life cycle of m6A methylation, as well as its function and relevant mechanisms in liver fibrosis (LF), nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatitis virus infection, and hepatocellular carcinoma (HCC), and eventually we explore the potential of m6A as a treatment option for these liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    CAS  PubMed  Google Scholar 

  2. Saneyoshi M, Harada F, Nishimura S. Isolation and characterization of N6-methyladenosine from Escherichia coli valine transfer RNA. Biochim Biophys Acta. 1969;190:264–73.

    CAS  PubMed  Google Scholar 

  3. Iwanami Y, Brown GM. Methylated bases of ribosomal ribonucleic acid from HeLa cells. Arch Biochem Biophys. 1968;126:8–15.

    CAS  PubMed  Google Scholar 

  4. Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bokar JA, Shambaugh ME, Polayes D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.

    CAS  PubMed  Google Scholar 

  8. Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63:306–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Warda AS, Kretschmer J, Hackert P, et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma H, Wang X, Cai J, et al. N(6-)methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15:88–94.

    CAS  PubMed  Google Scholar 

  12. van Tran N, Ernst FGM, Hawley BR, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucl Acids Res. 2019;47:7719–33.

    PubMed  PubMed Central  Google Scholar 

  13. Peng H, Chen B, Wei W, et al. N(6)-methyladenosine (m(6)A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat Metab. 2022;4:1041–54.

    CAS  PubMed  Google Scholar 

  14. Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12:767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71(973–85): e5.

    Google Scholar 

  17. Fu Y, Jia G, Pang X, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun. 2013;4:1798.

    PubMed  Google Scholar 

  18. Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19:88.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37:270–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucl Acids Res. 2020;48:3816–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhuang M, Li X, Zhu J, et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nuc Acids Res. 2019;47:4765–77.

  23. Zhou J, Wan J, Gao X, et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li A, Chen YS, Ping XL, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017;6.

  28. Mao Y, Dong L, Liu XM, et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 2019;10:5332.

    PubMed  PubMed Central  Google Scholar 

  29. Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou KI, Shi H, Lyu R, et al. Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol Cell. 2019;76(70–81): e9.

    Google Scholar 

  31. Alarcon CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162:1299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meyer KD, Patil DP, Zhou J, et al. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. He PC, He C. m(6) A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 2021;40: e105977.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38(Suppl 1):S38-53.

    PubMed  Google Scholar 

  36. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui Z, Huang N, Liu L, et al. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics. 2020;12:1707–23.

    CAS  PubMed  Google Scholar 

  38. Fan C, Ma Y, Chen S, et al. Comprehensive analysis of the transcriptome-wide m6A methylation modification difference in liver fibrosis mice by high-throughput m6A sequencing. Front Cell Dev Biol. 2021;9: 767051.

    PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Zhao Y, Wang Z, et al. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol. 2021;12: 652782.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Geng Y, Wang Y, Sun R, et al. Carnosol alleviates nonalcoholic fatty liver disease by inhibiting mitochondrial dysfunction and apoptosis through targeting of PRDX3. Toxicol Appl Pharmacol. 2021;432: 115758.

    CAS  PubMed  Google Scholar 

  41. Sun R, Tian X, Li Y, et al. The m6A reader YTHDF3-mediated PRDX3 translation alleviates liver fibrosis. Redox Biol. 2022;54: 102378.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang JJ, Wang J, Yang Y, et al. ALKBH5 ameliorated liver fibrosis and suppressed HSCs activation via triggering PTCH1 activation in an m(6)A dependent manner. Eur J Pharmacol. 2022;922: 174900.

    CAS  PubMed  Google Scholar 

  43. Shen M, Guo M, Li Y, et al. m(6)A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radic Biol Med. 2022;182:246–59.

    CAS  PubMed  Google Scholar 

  44. Shen M, Li Y, Wang Y, et al. N(6)-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021;47: 102151.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao T, Qi J, Liu T, et al. N6-methyladenosine modification participates in the progression of hepatitis B virus-related liver fibrosis by regulating immune cell infiltration. Front Med (Lausanne). 2022;9: 821710.

    PubMed  Google Scholar 

  46. Shu B, Zhou YX, Li H, et al. The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis and M1 polarization of macrophages and contributes to liver fibrosis. Cell Death Discov. 2021;7:368.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo Y, Zhang Z, Xiang L, et al. Analysis of N6-methyladenosine methylation modification in fructose-induced non-alcoholic fatty liver disease. Front Endocrinol (Lausanne). 2021;12: 780617.

    PubMed  Google Scholar 

  48. Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 2018;25(1816–28): e4.

    Google Scholar 

  49. Feng Y, Dong H, Sun B, et al. METTL3/METTL14 Transactivation and m(6)A-dependent TGF-beta1 translation in activated kupffer cells. Cell Mol Gastroenterol Hepatol. 2021;12:839–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang H, Zhang Z, Yu L, et al. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J Cell Biochem. 2018;119:5676–85.

    CAS  PubMed  Google Scholar 

  51. Guo J, Ren W, Li A, et al. Fat mass and obesity-associated gene enhances oxidative stress and lipogenesis in nonalcoholic fatty liver disease. Dig Dis Sci. 2013;58:1004–9.

    CAS  PubMed  Google Scholar 

  52. Hu Y, Feng Y, Zhang L, et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m(6)A on lipogenic mRNAs. RNA Biol. 2020;17:930–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Zhang Q, Cui G, et al. m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genom Proteom Bioinform. 2020;18:371–83.

    CAS  Google Scholar 

  54. Qin Y, Li B, Arumugam S, et al. m(6)A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep. 2021;37: 109968.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou B, Liu C, Xu L, et al. N(6)-methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes. Hepatology. 2021;73:91–103.

    CAS  PubMed  Google Scholar 

  56. Peneau C, Imbeaud S, La Bella T, et al. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut. 2022;71:616–26.

    CAS  PubMed  Google Scholar 

  57. Li TY, Yang Y, Zhou G, et al. Immune suppression in chronic hepatitis B infection associated liver disease: a review. World J Gastroenterol. 2019;25:3527–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim GW, Siddiqui A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs. Proc Natl Acad Sci USA. 2021;118.

  59. Kim GW, Imam H, Siddiqui A. The RNA binding proteins YTHDC1 and FMRP regulate the nuclear export of N(6)-methyladenosine-modified hepatitis B virus transcripts and affect the viral life cycle. J Virol. 2021;95: e0009721.

    PubMed  Google Scholar 

  60. Imam H, Khan M, Gokhale NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci USA. 2018;115:8829–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim GW, Moon JS, Siddiqui A. N6-methyladenosine modification of the 5' epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral core protein. Proc Natl Acad Sci USA. 2022;119.

  62. Kim GW, Siddiqui A. Hepatitis B virus X protein expression is tightly regulated by N6-methyladenosine modification of its mRNA. J Virol. 2022;96: e0165521.

    PubMed  Google Scholar 

  63. Kim GW, Imam H, Khan M, et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology. 2021;73:533–47.

    CAS  PubMed  Google Scholar 

  64. Kim GW, Imam H, Khan M, et al. N(6)-methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. J Biol Chem. 2020;295:13123–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Imam H, Kim GW, Mir SA, et al. Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified Hepatitis B Virus transcripts. PLoS Pathog. 2020;16: e1008338.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Qu S, Jin L, Huang H, et al. A positive-feedback loop between HBx and ALKBH5 promotes hepatocellular carcinogenesis. BMC Cancer. 2021;21:686.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tao L, Li D, Mu S, et al. LncRNA MAPKAPK5_AS1 facilitates cell proliferation in hepatitis B virus -related hepatocellular carcinoma. Lab Invest. 2022;102:494–504.

    CAS  PubMed  Google Scholar 

  68. Rao X, Lai L, Li X, et al. N(6)-methyladenosine modification of circular RNA circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305. IUBMB Life. 2021;73:408–17.

    CAS  PubMed  Google Scholar 

  69. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  70. Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    CAS  PubMed  Google Scholar 

  71. Lin X, Chai G, Wu Y, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10:2065.

    PubMed  PubMed Central  Google Scholar 

  72. Qiao K, Liu Y, Xu Z, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis. 2021;24:83–96.

    CAS  PubMed  Google Scholar 

  73. Xu H, Wang H, Zhao W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 2020;10:5671–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18:127.

    PubMed  PubMed Central  Google Scholar 

  75. Chou J, Lin JH, Brenot A, et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15:201–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019;18:186.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu X, Liu J, Xiao W, et al. SIRT1 Regulates N(6)-methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation. Hepatology. 2020;72:2029–50.

    CAS  PubMed  Google Scholar 

  78. Chen Y, Zhao Y, Chen J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1. Mol Cancer. 2020;19:123.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene. 2020;39:4507–18.

    CAS  PubMed  Google Scholar 

  80. Zhong L, Liao D, Zhang M, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252–61.

    CAS  PubMed  Google Scholar 

  81. Ma Y, Han CC, Li Y, et al. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops. Biochem Biophys Res Commun. 2016;478:964–9.

    CAS  PubMed  Google Scholar 

  82. Nguyen LH, Robinton DA, Seligson MT, et al. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. Cancer Cell. 2014;26:248–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.

    CAS  PubMed  Google Scholar 

  84. Zuo X, Chen Z, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol. 2020;13:5.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Xia A, Yuan W, Wang Q, et al. The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription. Nat Cancer. 2022;3:203–18.

    CAS  PubMed  Google Scholar 

  86. Chen YT, Xiang D, Zhao XY, et al. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m(6)A methylation promotes disease progression and sorafenib resistance. Hum Cell. 2021;34:1800–11.

    CAS  PubMed  Google Scholar 

  87. Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol. 2022.

  88. Liang W, Wang Y, Zhang Q, et al. M(6)A-mediated upregulation of LINC00106 promotes stemness and metastasis properties of hepatocellular carcinoma via sponging Let7f. Front Cell Dev Biol. 2021;9: 781867.

    PubMed  PubMed Central  Google Scholar 

  89. Dai YZ, Liu YD, Li J, et al. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m(6)A-dependent manner. Cell Mol Biol Lett. 2022;27:41.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rong D, Wu F, Lu C, et al. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. Mol Ther Nucl Acids. 2021;26:637–48.

    CAS  Google Scholar 

  91. Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer. 2022;21:109.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu H, Lan T, Li H, et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics. 2021;11:1396–411.

    PubMed  PubMed Central  Google Scholar 

  93. Chen Y, Ling Z, Cai X, et al. Activation of YAP1 by N6-methyladenosine-modified circCPSF6 drives malignancy in hepatocellular carcinoma. Cancer Res. 2022;82:599–614.

    CAS  PubMed  Google Scholar 

  94. Duan JL, Chen W, Xie JJ, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 2022;21:93.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu A, Hu Y, Xu Y, et al. Methyltransferase-like 3-mediated m6A methylation of Hsa_circ_0058493 accelerates hepatocellular carcinoma progression by binding to YTH domain-containing protein 1. Front Cell Dev Biol. 2021;9: 762588.

    PubMed  PubMed Central  Google Scholar 

  96. Liu L, Gu M, Ma J, et al. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol Cancer. 2022;21:149.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Qu N, Bo X, Li B, et al. Role of N6-methyladenosine (m(6)A) methylation regulators in hepatocellular carcinoma. Front Oncol. 2021;11: 755206.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bo C, Li N, He L, et al. Long non-coding RNA ILF3-AS1 facilitates hepatocellular carcinoma progression by stabilizing ILF3 mRNA in an m(6)A-dependent manner. Hum Cell. 2021;34:1843–54.

    CAS  PubMed  Google Scholar 

  99. Chen F, Li M, Wang L. LncRNA CASC11 promotes hepatocellular carcinoma progression via upregulation of UBE2T in a m(6)A-dependent manner. Front Oncol. 2021;11: 772671.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen J, Zhou X, Wu W, et al. FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice. J Physiol Biochem. 2015;71:405–13.

    CAS  PubMed  Google Scholar 

  101. Dang Y, Hao S, Zhou W, et al. The traditional Chinese formulae Ling-gui-zhu-gan decoction alleviated non-alcoholic fatty liver disease via inhibiting PPP1R3C mediated molecules. BMC Complement Altern Med. 2019;19:8.

    PubMed  PubMed Central  Google Scholar 

  102. Liu T, Yang LL, Zou L, et al. Chinese medicine formula lingguizhugan decoction improves beta-oxidation and metabolism of fatty acid in high-fat-diet-induced rat model of fatty liver disease. Evid Based Complement Alternat Med. 2013;2013: 429738.

    PubMed  PubMed Central  Google Scholar 

  103. Dang Y, Xu J, Yang Y, et al. Ling-gui-zhu-gan decoction alleviates hepatic steatosis through SOCS2 modification by N6-methyladenosine. Biomed Pharmacother. 2020;127: 109976.

    CAS  PubMed  Google Scholar 

  104. Chen YW, Liu BW, Zhang YJ, et al. Preservation of basal AcSDKP attenuates carbon tetrachloride-induced fibrosis in the rat liver. J Hepatol. 2010;53:528–36.

    CAS  PubMed  Google Scholar 

  105. Wei A, Zhao F, Hao A, et al. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) mitigates the liver fibrosis via WTAP/m(6)A/Ptch1 axis through Hedgehog pathway. Gene. 2022;813: 146125.

    CAS  PubMed  Google Scholar 

  106. Lu N, Li X, Yu J, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) A RNA methylation in piglets. Lipids. 2018;53:53–63.

    PubMed  Google Scholar 

  107. Peng S, Xiao W, Ju D, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med. 2019;11.

  108. Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134:17963–71.

    CAS  PubMed  Google Scholar 

  109. Li Q, Huang Y, Liu X, et al. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage. J Biol Chem. 2016;291:11083–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172(90–105): e23.

    Google Scholar 

  111. Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35(677–91): e10.

    Google Scholar 

Download references

Acknowledgements

The study was funded by National Natural Science Foundation of China (No. 81820108005, 82270551, 81900502), National Key R&D Program of China (No. 2020YFA0710803 and 2017YFA0105704) and Key R&D Program of Shaanxi (No. 2021ZDLSF02-07 and 2022ZDLSF03-03). The Fig. 2 was drawn by Figdraw website (www.figdraw.com).

Author information

Authors and Affiliations

Authors

Contributions

LY, ST, XZ, and MZ contributed to collection of references and manuscript writing. XZ contributed to manuscript revisions. YH and YS contributed to determining the subject and manuscript revisions. All authors contributed to the article and approved the submission.

Corresponding authors

Correspondence to Lan Yang, Yulong Shang or Ying Han.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Tian, S., Zheng, X. et al. N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment. J Gastroenterol 58, 718–733 (2023). https://doi.org/10.1007/s00535-023-02008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-02008-4

Keywords

Navigation