Skip to main content

Advertisement

Log in

Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

When endoscopically resected specimens of early colorectal cancer (CRC) show high-risk features, surgery should be performed based on current guidelines because of the high-risk of lymph node metastasis (LNM). The aim of this study was to determine the utility of an artificial intelligence (AI) with deep learning (DL) of hematoxylin and eosin (H&E)-stained endoscopic resection specimens without manual-pixel-level annotation for predicting LNM in T1 CRC. In addition, we assessed AI performance for patients with only submucosal (SM) invasion depth of 1000 to 2000 μm known to be difficult to predict LNM in clinical practice.

Methods

H&E-stained whole slide images (WSIs) were scanned for endoscopic resection specimens of 400 patients who underwent endoscopic treatment for newly diagnosed T1 CRC with additional surgery. The area under the curve (AUC) of the receiver operating characteristic curve was used to determine the accuracy of AI for predicting LNM with a fivefold cross-validation in the training set and in a held-out test set.

Results

We developed an AI model using a two-step attention-based DL approach without clinical features (AUC, 0.764). Incorporating clinical features into the model did not improve its prediction accuracy for LNM. Our model reduced unnecessary additional surgery by 15.1% more than using the current guidelines (67.4% vs. 82.5%). In patients with SM invasion depth of 1000 to 2000 μm, the AI avoided 16.1% of unnecessary additional surgery than using the JSCCR guidelines.

Conclusions

Our study is the first to show that AI trained with DL of H&E-stained WSIs has the potential to predict LNM in T1 CRC using only endoscopically resected specimens with conventional histologic risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

AI:

Artificial intelligence

AM:

Attention module

AS:

Attention score

CRC:

Colorectal cancer

CV:

Cross-validation

DCNN:

Deep convolution neural network

DL:

Deep learning

EMR:

Endoscopic mucosal resection

ESD:

Endoscopic submucosal dissection

FE:

Feature extractor

FV:

Feature vector

H&E:

Hematoxylin and eosin

IQR:

Interquartile range

JSCCR:

Japanese Society for Cancer of the Colon and Rectum

LNM:

Lymph node metastasis

LVI:

Lymphovascular invasion

RF:

Random forest

ROI:

Regions of interest

SM:

Submucosal

ROC:

The receiver operating characteristic

WSIs:

Whole slide images

References

  1. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53. https://doi.org/10.1002/ijc.31937.

    Article  CAS  PubMed  Google Scholar 

  2. Wong MCS, Ding H, Wang J, et al. Prevalence and risk factors of colorectal cancer in Asia. Intest Res. 2019;17(3):317–29. https://doi.org/10.5217/ir.2019.00021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fujimori T, Kawamata H, Kashida H. Precancerous lesions of the colorectum. J Gastroenterol. 2001;36(9):587–94. https://doi.org/10.1007/s005350170041.

    Article  CAS  PubMed  Google Scholar 

  4. Morson BC, Whiteway JE, Jones EA, et al. Histopathology and prognosis of malignant colorectal polyps treated by endoscopic polypectomy. Gut. 1984;25(5):437–44. https://doi.org/10.1136/gut.25.5.437(ineng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Minamoto T, Mai M, Ogino T, et al. Early invasive colorectal carcinomas metastatic to the lymph node with attention to their nonpolypoid development. Am J Gastroenterol. 1993;88(7):1035–9 ((in eng)).

    CAS  PubMed  Google Scholar 

  6. Kitajima K, Fujimori T, Fujii S, et al. Correlations between lymph node metastasis and depth of submucosal invasion in submucosal invasive colorectal carcinoma: a Japanese collaborative study. J Gastroenterol. 2004;39(6):534–43.

    Article  Google Scholar 

  7. Kyzer S, Begin LR, Gordon PH, et al. The care of patients with colorectal polyps that contain invasive adenocarcinoma Endoscopic polypectomy or colectomy? Cancer. 1992;70(8):2044–50.

    Article  CAS  Google Scholar 

  8. Watanabe T, Muro K, Ajioka Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clini Oncol. 2018;23(1):1–34. https://doi.org/10.1007/s10147-017-1101-6.

    Article  Google Scholar 

  9. Ramirez M, Schierling S, Papaconstantinou HT, et al. Management of the malignant polyp. Clin Colon Rectal Surg. 2008;21(4):286–90. https://doi.org/10.1055/s-0028-1089944(ineng).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aarons CB, Shanmugan S, Bleier JI. Management of malignant colon polyps: current status and controversies. World J Gastroenterol. 2014;20(43):16178–83. https://doi.org/10.3748/wjg.v20.i43.16178(ineng).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pérez I, Fernández L, Sánchez-Ramón S, et al. Reliability evaluation of four different assays for therapeutic drug monitoring of infliximab levels. Therap Adv Gastroenterol. 2018;11:1756284818783613–1756284818783613. https://doi.org/10.1177/1756284818783613(ineng).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nivatvongs S, Rojanasakul A, Reiman HM, et al. The risk of lymph node metastasis in colorectal polyps with invasive adenocarcinoma. Dis Colon Rectum. 1991;34(4):323–8. https://doi.org/10.1007/bf02050592(ineng).

    Article  CAS  PubMed  Google Scholar 

  13. Netzer P, Forster C, Biral R, et al. Risk factor assessment of endoscopically removed malignant colorectal polyps. Gut. 1998;43(5):669–74. https://doi.org/10.1136/gut.43.5.669(ineng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooper HS. Surgical pathology of endoscopically removed malignant polyps of the colon and rectum. Am J Surg Pathol. 1983;7(7):613–23.

    Article  CAS  Google Scholar 

  15. Coverlizza S, Risio M, Ferrari A, et al. Colorectal adenomas containing invasive carcinoma. Pathologic assessment of lymph node metastatic potential. Cancer. 1989;64(9):1937–47.

    Article  CAS  Google Scholar 

  16. Colacchio TA, Forde KA, Scantlebury V. Endoscopic polypectomy: inadequate treatment for invasive colorectal carcinoma. Ann Surg. 1982;194:704–7.

    Article  Google Scholar 

  17. Choi YS, Kim WS, Hwang SW, et al. Clinical outcomes of submucosal colorectal cancer diagnosed after endoscopic resection: a focus on the need for surgery. Intest Res. 2020;18(1):96–106. https://doi.org/10.5217/ir.2019.00092.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kojima M, Puppa G, Kirsch R, et al. Blood and lymphatic vessel invasion in pT1 colorectal cancer: an international concordance study. J Clin Pathol. 2015;68(8):628–32. https://doi.org/10.1136/jclinpath-2014-202805(ineng).

    Article  PubMed  Google Scholar 

  19. Kouyama Y, Kudo SE, Miyachi H, et al. Practical problems of measuring depth of submucosal invasion in T1 colorectal carcinomas. Int J Colorectal Dis. 2016;31(1):137–46. https://doi.org/10.1007/s00384-015-2403-7(ineng).

    Article  PubMed  Google Scholar 

  20. Barel F, Auffret A, Cariou M, et al. High reproducibility is attainable in assessing histoprognostic parameters of pT1 colorectal cancer using routine histopathology slides and immunohistochemistry analyses. Pathology. 2019;51(1):46–54. https://doi.org/10.1016/j.pathol.2018.10.007(ineng).

    Article  PubMed  Google Scholar 

  21. Ichimasa K, Kudo SE, Miyachi H, et al. Current problems and perspectives of pathological risk factors for lymph node metastasis in T1 colorectal cancer: systematic review. Dig Endosc. 2021. https://doi.org/10.1111/den.14220(ineng).

    Article  PubMed  Google Scholar 

  22. Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med. 2019;25(1):14–5. https://doi.org/10.1038/s41591-018-0320-3.

    Article  CAS  PubMed  Google Scholar 

  23. Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci. 2018;115(13):E2970–9. https://doi.org/10.1073/pnas.1717139115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagpal K, Foote D, Liu Y, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. npj Digit Med. 2019;2(1):48. https://doi.org/10.1038/s41746-019-0112-2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67. https://doi.org/10.1038/s41591-018-0177-5.

    Article  CAS  PubMed  Google Scholar 

  26. Schmauch B, Romagnoni A, Pronier E, et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat Commun. 2020;11(1):3877. https://doi.org/10.1038/s41467-020-17678-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ichimasa K, Kudo SE, Mori Y, et al. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy. 2018;50(3):230–40. https://doi.org/10.1055/s-0043-122385(ineng).

    Article  PubMed  Google Scholar 

  28. Takamatsu M, Yamamoto N, Kawachi H, et al. Prediction of early colorectal cancer metastasis by machine learning using digital slide images. Comput Methods Progr Biomed. 2019;178:155–61. https://doi.org/10.1016/j.cmpb.2019.06.022.

    Article  Google Scholar 

  29. Kudo S-e, Ichimasa K, Villard B, et al. Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node. Gastroenterology. 2001. https://doi.org/10.1053/j.gastro.2020.09.027.

    Article  Google Scholar 

  30. Egashira Y, Yoshida T, Hirata I, et al. Analysis of pathological risk factors for lymph node metastasis of submucosal invasive colon cancer. Mod Pathol. 2004;17(5):503–11. https://doi.org/10.1038/modpathol.3800030.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka S, Haruma K, Oh-E H, et al. Conditions of curability after endoscopic resection for colorectal carcinoma with submucosally massive invasion. Oncol Rep. 2000;7(4):783–91. https://doi.org/10.3892/or.7.4.783.

    Article  CAS  PubMed  Google Scholar 

  32. Nakadoi K, Tanaka S, Kanao H, et al. Management of T1 colorectal carcinoma with special reference to criteria for curative endoscopic resection. J Gastroenterol Hepatol. 2012. https://doi.org/10.1111/j.1440-1746.2011.07041.x(ineng).

    Article  PubMed  Google Scholar 

  33. Vermeer NCA, Backes Y, Snijders HS, et al. National cohort study on postoperative risks after surgery for submucosal invasive colorectal cancer. BJS Open. 2018;3(2):210–7. https://doi.org/10.1002/bjs5.50125(ineng).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ilse M, Tomczak J, Welling M, editors. Attention-based deep multiple instance learning. International conference on machine learning. 2018 PMLR

  35. Lu MY, Zhao M, Shady M, et al. Deep learning-based computational pathology predicts origins for cancers of unknown primary. arXiv preprint arXiv:200613932. 2020.

  36. Echle A, Rindtorff NT, Brinker TJ, et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer. 2021;124(4):686–96. https://doi.org/10.1038/s41416-020-01122-x.

    Article  PubMed  Google Scholar 

  37. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  38. Benson AB, Venook AP, Al-Hawary MM, et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(7):874–901. https://doi.org/10.6004/jnccn.2018.0061(ineng).

    Article  PubMed  Google Scholar 

  39. Hashiguchi Y, Muro K, Saito Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol. 2020;25(1):1–42. https://doi.org/10.1007/s10147-019-01485-z(ineng).

    Article  PubMed  Google Scholar 

  40. Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Canc Netw. 2018;16(4):359–69. https://doi.org/10.6004/jnccn.2018.0021(ineng).

    Article  PubMed  Google Scholar 

  41. Takamatsu M, Yamamoto N, Kawachi H, et al. Prediction of lymph node metastasis in early colorectal cancer based on histologic images by artificial intelligence. Sci Rep. 2022;12(1):2963. https://doi.org/10.1038/s41598-022-07038-1(ineng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brockmoeller S, Echle A, Ghaffari Laleh N, et al. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J Pathol. 2022;256(3):269–81. https://doi.org/10.1002/path.5831(ineng).

    Article  CAS  PubMed  Google Scholar 

  43. Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 2019;16(1): e1002730. https://doi.org/10.1371/journal.pmed.1002730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuhr L, Abreu M, Carbone A, et al. The Interplay between colon cancer cells and tumour-associated stromal cells impacts the biological clock and enhances malignant phenotypes. Cancers (Basel). 2019;11(7):988. https://doi.org/10.3390/cancers11070988(ineng).

    Article  CAS  Google Scholar 

  45. Ueno H, Kanemitsu Y, Sekine S, et al. Desmoplastic pattern at the tumor front defines poor-prognosis subtypes of colorectal cancer. Am J Surg Pathol. 2017;41(11):1506–12. https://doi.org/10.1097/pas.0000000000000946(ineng).

    Article  PubMed  Google Scholar 

  46. Ozeki T, Shimura T, Ozeki T, et al. The risk analyses of lymph node metastasis and recurrence for submucosal invasive colorectal cancer: novel criteria to skip completion surgery. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14030822.

    Article  Google Scholar 

  47. Yoda Y, Ikematsu H, Matsuda T, et al. A large-scale multicenter study of long-term outcomes after endoscopic resection for submucosal invasive colorectal cancer. Endoscopy. 2013;45(9):718–24. https://doi.org/10.1055/s-0033-1344234(ineng).

    Article  PubMed  Google Scholar 

  48. Ikematsu H, Yoda Y, Matsuda T, et al. Long-term outcomes after resection for submucosal invasive colorectal cancers. Gastroenterology. 2013;144(3):551–9. https://doi.org/10.1053/j.gastro.2012.12.003.

    Article  PubMed  Google Scholar 

  49. He K, Zhang X, Ren S, et al., editors. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016

  50. Liu L, Jiang H, He P, et al. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:190803265. 2019

  51. Buslaev A, Iglovikov VI, Khvedchenya E, et al. Albumentations: fast and flexible image augmentations. Information. 2020;11(2):125.

    Article  Google Scholar 

  52. Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019;25(7):1054–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest to disclose. This study was supported by Samsung Medical Center Grant #SMO1210071.

Funding

Samsung Medical Center,#SMO1210071,Eun Ran Kim.

Author information

Authors and Affiliations

Authors

Contributions

J.H.S.: Conception and design of the study, analysis and interpretation of data, and preparation of the manuscript; Y.H.: Conception and design of the study, performance of experiments, and preparation of the manuscript; E.R.K.: Conception and design of the study, critical revision of the manuscript for important intellectual content, and final approval of the manuscript; S–H.K., I.S.: critical revision of the manuscript for important intellectual content, and final approval of the manuscript.

Corresponding author

Correspondence to Eun Ran Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.H., Hong, Y., Kim, E.R. et al. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer. J Gastroenterol 57, 654–666 (2022). https://doi.org/10.1007/s00535-022-01894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-022-01894-4

Keywords

Navigation