Skip to main content
Log in

Thiopurine pharmacogenomics and pregnancy in inflammatory bowel disease

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The thiopurine drugs azathioprine and 6-mercaptopurine are widely used for the maintenance of clinical remission in steroid-dependent inflammatory bowel disease (IBD). Thiopurines are recommended to be continued throughout pregnancy in IBD patients, but conclusive safety data in pregnant patients remain still insufficient. On the other hand, a strong association between a genetic variant of nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15 p.Arg139Cys) and thiopurine-induced myelotoxicity has been identified. Pharmacokinetic studies have revealed that thiopurine metabolism is altered in pregnant IBD patients and suggested that the fetus may be exposed to the active-thiopurine metabolite, 6-thioguaninetriphosphate, in the uterus. A recent study using knock-in mice harboring the p.Arg138Cys mutation which corresponds to human p.Arg139Cys showed that oral administration of 6-MP at clinical dose induces a severe toxic effect on the fetus harboring the homozygous or heterozygous risk allele. This suggests that NUDT15 genotyping may be required in both women with IBD who are planning pregnancy (or pregnant) and their partner to avoid adverse outcomes for their infant. The risk to the fetus due to maternal thiopurine use is minimal but there are some concerns that are yet to be clarified. In particular, a pharmacogenomic approach to the fetus is considered necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

This figure is a modified version from Ref. [27] under Copyright Permission from Elsevier

Similar content being viewed by others

References

  1. Amin J, Huang B, Yoon J, et al. Update 2014: advances to optimize 6-mercaptopurine and azathioprine to reduce toxicity and improve efficacy in the management of IBD. Inflamm Bowel Dis. 2015;21:445–52.

    Article  PubMed  Google Scholar 

  2. Lee MN, Kang B, Choi SY, et al. Relationship between azathioprine dosage, 6-thioguanine nucleotide levels, and therapeutic response in pediatric patients with IBD treated with azathioprine. Inflamm Bowel Dis. 2015;21:1054–62.

    Article  CAS  PubMed  Google Scholar 

  3. Timmer A, McDonald JW, Tsoulis DJ, et al. Azathioprine and 6-mercaptopurine for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;9: CD000478.

    Google Scholar 

  4. Chande N, Patton PH, Tsoulis DJ, et al. Azathioprine or 6-mercaptopurine for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD000067.pub3.

    Article  PubMed  Google Scholar 

  5. Torres J, Bonovas S, Doherty G, et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. J Crohns Colitis. 2020;14:4–22.

    Article  PubMed  Google Scholar 

  6. van Gennep S, de Boer NK, D’Haens GR, et al. Thiopurine treatment in ulcerative colitis: a critical review of the evidence for current clinical practice. Inflamm Bowel Dis. 2017;24:67–77.

    Article  PubMed  Google Scholar 

  7. Gearry RB, Barclay ML, Burt MJ, et al. Thiopurine drug adverse effects in a population of New Zealand patients with inflammatory bowel disease. Pharmacoepidemiol Drug Saf. 2004;13:563–7.

    Article  CAS  PubMed  Google Scholar 

  8. Van Dieren JM, Hansen BE, Kuipers EJ, et al. Meta-analysis: inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2007;26:643–52.

    Article  PubMed  CAS  Google Scholar 

  9. Chaparro M, Ordas I, Cabre E, et al. Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study of 3931 patients. Inflamm Bowel Dis. 2013;19:1404–10.

    Article  PubMed  Google Scholar 

  10. Chang JY, Cheon JH. Thiopurine therapy in patients with inflammatory bowel disease: a focus on metabolism and pharmacogenetics. Dig Dis Sci. 2019;64:2395–403.

    Article  PubMed  Google Scholar 

  11. Chang JY, Park SJ, Jung ES, et al. Genotype-based treatment with thiopurine reduces incidence of myelosuppression in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18:2010-2018.e2.

    Article  CAS  PubMed  Google Scholar 

  12. de Boer NK, de Meij T, van Bodegraven AA. Thiopurines during pregnancy in inflammatory bowel disease: is there a risk for the (unborn) child? Expert Rev Gastroenterol Hepatol. 2013;7:669–71.

    Article  PubMed  CAS  Google Scholar 

  13. McConnell RA, Mahadevan U. Pregnancy and the patient with inflammatory bowel disease: fertility, treatment, delivery, and complications. Gastroenterol Clin North Am. 2016;45:285–301.

    Article  PubMed  Google Scholar 

  14. Nguyen GC, Seow CH, Maxwell C, et al. The Toronto consensus statements for the management of inflammatory bowel disease in pregnancy. Gastroenterology. 2016;150:734-757.e1.

    Article  PubMed  Google Scholar 

  15. Chowdhury R, Kane S. Editorial: thiopurine/anti-TNF use during pregnancy-more encouraging safety data. Aliment Pharmacol Ther. 2020;52:1409–10.

    PubMed  Google Scholar 

  16. Mahadevan U, McConnell RA, Chambers CD. Drug safety and risk of adverse outcomes for pregnant patients with inflammatory bowel disease. Gastroenterology. 2017;152:451-462.e2.

    Article  PubMed  Google Scholar 

  17. Yang SK, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014;46:1017–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asada A, Nishida A, Shioya M, et al. NUDT15 R139C-related thiopurine leukocytopenia is mediated by 6-thioguanine nucleotide-independent mechanism in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2016;51:22–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kakuta Y, Kawai Y, Okamoto D, et al. NUDT15 codon 139 is the best pharmacogenetic marker for predicting thiopurine-induced severe adverse events in Japanese patients with inflammatory bowel disease: a multicenter study. J Gastroenterol. 2018;53:1065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105:1095–105.

    Article  CAS  PubMed  Google Scholar 

  21. Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48:367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dean L, et al. Azathioprine therapy and TPMT and NUDT15 genotype. In: Pratt VM, Scott SA, Pirmohamed M, et al., editors. Medical genetics summaries. Bethesda: National Center for Biotechnology Information; 2012.

    Google Scholar 

  23. Coenen MJH. NUDT15 genotyping in Caucasian patients can help to optimise thiopurine treatment in patients with inflammatory bowel disease. Transl Gastroenterol Hepatol. 2019;4:81.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Palmieri O, Latiano A, Bossa F, et al. Sequential evaluation of thiopurine methyltransferase, inosine triphosphate pyrophosphatase, and HPRT1 genes polymorphisms to explain thiopurines’ toxicity and efficacy. Aliment Pharmacol Ther. 2007;26:737–45.

    Article  CAS  PubMed  Google Scholar 

  25. Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33:1235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Warner B, Johnston E, Arenas-Hernandez M, et al. A practical guide to thiopurine prescribing and monitoring in IBD. Frontline Gastroenterol. 2018;9:10–5.

    Article  CAS  PubMed  Google Scholar 

  27. Imai T, Kawahara M, Tatsumi G, et al. Thiopurine use during pregnancy has deleterious effects on offspring in Nudt 15(R138C) knock-in mice. Cell Mol Gastroenterol Hepatol. 2021;12:335–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tatsumi G, Kawahara M, Imai T, et al. Thiopurine-mediated impairment of hematopoietic stem and leukemia cells in Nudt 15(R138C) knock-in mice. Leukemia. 2020;34:882–94.

    Article  CAS  PubMed  Google Scholar 

  29. Szymanska E, Kisielewski R, Kierkus J. Reproduction and pregnancy in inflammatory bowel disease—management and treatment based on current guidelines. J Gynecol Obstet Hum Reprod. 2021;50: 101777.

    Article  PubMed  Google Scholar 

  30. Tavernier N, Fumery M, Peyrin-Biroulet L, et al. Systematic review: fertility in non-surgically treated inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38:847–53.

    Article  CAS  PubMed  Google Scholar 

  31. Marri SR, Ahn C, Buchman AL. Voluntary childlessness is increased in women with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:591–9.

    Article  PubMed  Google Scholar 

  32. Dickson I. Pregnancy safe and beneficial for women with IBD. Nat Rev Gastroenterol Hepatol. 2019;16:454.

    PubMed  Google Scholar 

  33. Selinger CP, Leong RW, Lal S. Pregnancy related issues in inflammatory bowel disease: evidence base and patients’ perspective. World J Gastroenterol. 2012;18:2600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cornish J, Tan E, Teare J, et al. A meta-analysis on the influence of inflammatory bowel disease on pregnancy. Gut. 2007;56:830–7.

    Article  CAS  PubMed  Google Scholar 

  35. Abhyankar A, Ham M, Moss AC. Meta-analysis: the impact of disease activity at conception on disease activity during pregnancy in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38:460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Broms G, Granath F, Linder M, et al. Birth outcomes in women with inflammatory bowel disease: effects of disease activity and drug exposure. Inflamm Bowel Dis. 2014;20:1091–8.

    PubMed  Google Scholar 

  37. Reddy D, Murphy SJ, Kane SV, et al. Relapses of inflammatory bowel disease during pregnancy: in-hospital management and birth outcomes. Am J Gastroenterol. 2008;103:1203–9.

    Article  CAS  PubMed  Google Scholar 

  38. van der Woude CJ, Ardizzone S, Bengtson MB, et al. The second European evidenced-based consensus on reproduction and pregnancy in inflammatory bowel disease. J Crohns Colitis. 2015;9:107–24.

    Article  PubMed  Google Scholar 

  39. Polifka JE, Friedman JM. Teratogen update: azathioprine and 6-mercaptopurine. Teratology. 2002;65:240–61.

    Article  CAS  PubMed  Google Scholar 

  40. Sandborn WJ. Azathioprine: state of the art in inflammatory bowel disease. Scand J Gastroenterol Suppl. 1998;225:92–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zimm S, Collins JM, Riccardi R, et al. Variable bioavailability of oral mercaptopurine. Is maintenance chemotherapy in acute lymphoblastic leukemia being optimally delivered? N Engl J Med. 1983;308:1005–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jharap B, de Boer NK, Stokkers P, et al. Intrauterine exposure and pharmacology of conventional thiopurine therapy in pregnant patients with inflammatory bowel disease. Gut. 2014;63:451–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ban L, Tata LJ, Fiaschi L, et al. Limited risks of major congenital anomalies in children of mothers with IBD and effects of medications. Gastroenterology. 2014;146:76–84.

    Article  CAS  PubMed  Google Scholar 

  44. Coelho J, Beaugerie L, Colombel JF, et al. Pregnancy outcome in patients with inflammatory bowel disease treated with thiopurines: cohort from the CESAME Study. Gut. 2011;60:198–203.

    Article  PubMed  Google Scholar 

  45. Mahadevan U, Long MD, Kane SV, et al. Pregnancy and neonatal outcomes after fetal exposure to biologics and thiopurines among women with inflammatory bowel disease. Gastroenterology. 2021;160:1131–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kanis SL, de Lima-Karagiannis A, de Boer NKH, et al. Use of thiopurines during conception and pregnancy is not associated with adverse pregnancy outcomes or health of infants at one year in a prospective study. Clin Gastroenterol Hepatol. 2017;15:1232-1241.e1.

    Article  CAS  PubMed  Google Scholar 

  47. Cleary BJ, Kallen B. Early pregnancy azathioprine use and pregnancy outcomes. Birth Defects Res A Clin Mol Teratol. 2009;85:647–54.

    Article  CAS  PubMed  Google Scholar 

  48. Hutson JR, Matlow JN, Moretti ME, et al. The fetal safety of thiopurines for the treatment of inflammatory bowel disease in pregnancy. J Obstet Gynaecol. 2013;33:1–8.

    Article  CAS  PubMed  Google Scholar 

  49. Akbari M, Shah S, Velayos FS, et al. Systematic review and meta-analysis on the effects of thiopurines on birth outcomes from female and male patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:15–22.

    Article  PubMed  Google Scholar 

  50. de Meij TG, Jharap B, Kneepkens CM, et al. Long-term follow-up of children exposed intrauterine to maternal thiopurine therapy during pregnancy in females with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38:38–43.

    Article  PubMed  CAS  Google Scholar 

  51. Norgard BM, Nielsen J, Friedman S. In utero exposure to thiopurines/anti-TNF agents and long-term health outcomes during childhood and adolescence in Denmark. Aliment Pharmacol Ther. 2020;52:829–42.

    Article  CAS  PubMed  Google Scholar 

  52. Van Asseldonk DP, de Boer NK, Peters GJ, et al. On therapeutic drug monitoring of thiopurines in inflammatory bowel disease; pharmacology, pharmacogenomics, drug intolerance and clinical relevance. Curr Drug Metab. 2009;10:981–97.

    Article  PubMed  Google Scholar 

  53. Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77:704–14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Biemans VBC, Savelkoul E, Gabriels RY, et al. A comparative analysis of tioguanine versus low-dose thiopurines combined with allopurinol in inflammatory bowel disease patients. Aliment Pharmacol Ther. 2020;51:1076–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakase H, Uchino M, Shinzaki S, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020. J Gastroenterol. 2021;56:489–526.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Derijks LJ, Gilissen LP, Engels LG, et al. Pharmacokinetics of 6-thioguanine in patients with inflammatory bowel disease. Ther Drug Monit. 2006;28:45–50.

    Article  CAS  PubMed  Google Scholar 

  58. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118:705–13.

    Article  CAS  PubMed  Google Scholar 

  59. Dubinsky MC. Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin Gastroenterol Hepatol. 2004;2:731–43.

    Article  CAS  PubMed  Google Scholar 

  60. de Boer NK, Wong DR, Jharap B, et al. Dose-dependent influence of 5-aminosalicylates on thiopurine metabolism. Am J Gastroenterol. 2007;102:2747–53.

    Article  PubMed  CAS  Google Scholar 

  61. Lowry PW, Franklin CL, Weaver AL, et al. Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut. 2001;49:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takahashi K, Bamba S, Morita Y, et al. pH-dependent 5-aminosalicylates releasing preparations do not affect thiopurine metabolism. Digestion. 2019;100:238–46.

    Article  CAS  PubMed  Google Scholar 

  63. Morikubo H, Kobayashi T, Ozaki R, et al. Differential effects of mesalazine formulations on thiopurine metabolism through thiopurine S-methyltransferase inhibition. J Gastroenterol Hepatol. 2021. https://doi.org/10.1111/jgh.15411.

    Article  PubMed  Google Scholar 

  64. Duley JA, Somogyi AA, Martin JH. The future of thiopurine pharmacogenomics. Pharmacogenomics. 2012;13:1549–52.

    Article  CAS  PubMed  Google Scholar 

  65. Iu YPH, Helander S, Kahlin AZ, et al. One amino acid makes a difference—characterization of a new TPMT allele and the influence of SAM on TPMT stability. Sci Rep. 2017;7: 46428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lennard L, Cartwright CS, Wade R, et al. Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia. Br J Clin Pharmacol. 2013;76:125–36.

    Article  CAS  PubMed  Google Scholar 

  67. Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun. 2015;6:8018.

    Article  CAS  PubMed  Google Scholar 

  68. Yamaguchi-Kabata Y, Nariai N, Kawai Y, et al. iJGVD: an integrative Japanese genome variation database based on whole-genome sequencing. Hum Genome Var. 2015;2:15050.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ban H, Andoh A, Tanaka A, et al. Analysis of thiopurine S-methyltransferase genotypes in Japanese patients with inflammatory bowel disease. Intern Med. 2008;47:1645–8.

    Article  PubMed  Google Scholar 

  70. Uchiyama K, Nakamura M, Kubota T, et al. Thiopurine S-methyltransferase and inosine triphosphate pyrophosphohydrolase genes in Japanese patients with inflammatory bowel disease in whom adverse drug reactions were induced by azathioprine/6-mercaptopurine treatment. J Gastroenterol. 2009;44:197–203.

    Article  CAS  PubMed  Google Scholar 

  71. Kakuta Y, Naito T, Onodera M, et al. NUDT15 R139C causes thiopurine-induced early severe hair loss and leukopenia in Japanese patients with IBD. Pharmacogenomics J. 2015;16:280–5.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu X, Wang XD, Chao K, et al. NUDT15 polymorphisms are better than thiopurine S-methyltransferase as predictor of risk for thiopurine-induced leukopenia in Chinese patients with Crohn’s disease. Aliment Pharmacol Ther. 2016;44:967–75.

    Article  CAS  PubMed  Google Scholar 

  73. Wong FC, Leung AW, Kwok JS, et al. NUDT15 variant and thiopurine-induced leukopenia in Hong Kong. Hong Kong Med J. 2016;22:185–7.

    Article  PubMed  Google Scholar 

  74. Liang DC, Yang CP, Liu HC, et al. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia. Pharmacogenomics J. 2016;16:536–9.

    Article  CAS  PubMed  Google Scholar 

  75. Xu Y, Qiao YQ, Li HY, et al. NUDT15 genotyping during azathioprine treatment in patients with inflammatory bowel disease: implications for a dose-optimization strategy. Gastroenterol Rep (Oxf). 2020;8:437–44.

    Article  Google Scholar 

  76. Kakuta Y, Izumiyama Y, Okamoto D, et al. High-resolution melt analysis enables simple genotyping of complicated polymorphisms of codon 18 rendering the NUDT15 diplotype. J Gastroenterol. 2020;55:67–77.

    Article  CAS  PubMed  Google Scholar 

  77. Walker GJ, Harrison JW, Heap GA, et al. Association of genetic variants in NUDT15 with thiopurine-induced myelosuppression in patients with inflammatory bowel disease. JAMA. 2019;321:773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schaeffeler E, Jaeger SU, Klumpp V, et al. Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry. Genet Med. 2019;21:2145–50.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Saarikoski S, Seppala M. Immunosuppression during pregnancy: transmission of azathioprine and its metabolites from the mother to the fetus. Am J Obstet Gynecol. 1973;115:1100–6.

    Article  CAS  PubMed  Google Scholar 

  80. Hutson JR, Lubetsky A, Walfisch A, et al. The transfer of 6-mercaptopurine in the dually perfused human placenta. Reprod Toxicol. 2011;32:349–53.

    Article  CAS  PubMed  Google Scholar 

  81. Maruyama H, Tada K, Fujiwara T, et al. Utility of maternal 6-thioguanine nucleotide levels in predicting neonatal pancytopenia. AJP Rep. 2013;3:25–8.

    PubMed  Google Scholar 

  82. Thomas C, Monteil-Ganiere C, Mirallie S, et al. A severe neonatal lymphopenia associated with administration of azathioprine to the mother in a context of Crohn’s disease. J Crohns Colitis. 2018;12:258–61.

    Article  PubMed  Google Scholar 

  83. Flanagan E, Wright EK, Hardikar W, et al. Maternal thiopurine metabolism during pregnancy in inflammatory bowel disease and clearance of thiopurine metabolites and outcomes in exposed neonates. Aliment Pharmacol Ther. 2021;53:810–20.

    CAS  PubMed  Google Scholar 

  84. Watters JW, Zhang W, Meucci MA, et al. Analysis of variation in mouse TPMT genotype, expression and activity. Pharmacogenetics. 2004;14:247–54.

    Article  CAS  PubMed  Google Scholar 

  85. Nishii R, Moriyama T, Janke LJ, et al. Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood. 2018;131:2466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moriyama T, Yang YL, Nishii R, et al. Novel variants in NUDT15 and thiopurine intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood. 2017;130:1209–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED) under Grant Number JP20gm1010008h9904 (AA) and 19ek0410056h0001 (YK), and in part by a Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan under Grant Number 19K08811(MK), 21K07955(YK) and 18K08002(AA), and in part by Health and Labor Sciences Research Grants for Research on Intractable Diseases from the Ministry of Health, Labor and Welfare of Japan under Grant Number 20FC1037 (AA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Andoh.

Ethics declarations

Conflict of interest

AA receiving lecture fee from Janssen, Takeda, AbbVie, Tanabe-Mitsubishi. All other authors declare that they have no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andoh, A., Kawahara, M., Imai, T. et al. Thiopurine pharmacogenomics and pregnancy in inflammatory bowel disease. J Gastroenterol 56, 881–890 (2021). https://doi.org/10.1007/s00535-021-01805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01805-z

Keywords

Navigation