Skip to main content

Advertisement

Log in

A genetic variant located in the miR-532-5p-binding site of TGFBR1 is associated with the colorectal cancer risk

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Genome-wide association studies have identified genes in the transforming growth factor-β (TGFβ) signaling pathway that are responsible for regulating carcinogenesis.

Methods

We searched for single-nucleotide polymorphisms (SNPs) located within 3′-untranslated regions (3′-UTRs) that might affect the ability of miRNAs to bind genes in the TGFβ pathway for further analysis. We used TaqMan technology to genotype these SNPs in a population-based case–control study of 1147 colorectal cancer patients and 1203 matched controls in a Chinese population.

Results

The rs1590 variant of TGFBR1 exhibited a significant association with colorectal cancer risk. Compared with individuals carrying the rs1590 TT genotype, individuals carrying the GT/GG genotypes had a decreased risk of colorectal cancer [odd ratio (OR) = 0.82, 95% confidence interval (CI) = 0.68–0.97], which was more evident among older individuals with a family history of cancer. Luciferase assays confirmed that the rs1590 T allele altered the capacity of miR-532-5p to bind TGFBR1.

Conclusions

Based on these findings, the rs1590 variant in the 3′-UTR of TGFBR1 may contribute to the susceptibility to colorectal cancer, predominantly by altering miR-532-5p binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GWAS:

Genome-wide association study

SNP:

Single-nucleotide polymorphism

3′-UTR:

3′-untranslated region

HWE:

Hardy–Weinberg equilibrium

OR:

Odd ratio

CIs:

Confidence intervals

TGFβ:

Transforming growth factor-β

References

  1. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67:177–93.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  3. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.

    Article  CAS  PubMed  Google Scholar 

  4. Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut. 2015;64:1623–36.

    Article  CAS  PubMed  Google Scholar 

  5. Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 2009;10:353–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.

    Article  CAS  PubMed  Google Scholar 

  7. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.

    Article  CAS  PubMed  Google Scholar 

  8. Valle L, Serena-Acedo T, Liyanarachchi S, et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science. 2008;321:1361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhong R, Liu L, Zou L, et al. Genetic variations in the TGFbeta signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis. 2013;34:936–42.

    Article  CAS  PubMed  Google Scholar 

  10. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  12. Ma L, Zhu L, Gu D, et al. A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population. Arch Toxicol. 2013;87:825–33.

    Article  CAS  PubMed  Google Scholar 

  13. Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.

    Article  PubMed Central  Google Scholar 

  14. Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel). 2013;5:676–713.

    Article  CAS  Google Scholar 

  15. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Tassan NA, Whiffin N, Hosking FJ, et al. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep. 2015;5:10442.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bellam N, Pasche B. Tgf-beta signaling alterations and colon cancer. Cancer Treat Res. 2010;155:85–103.

    Article  CAS  PubMed  Google Scholar 

  18. Pasche B, Knobloch TJ, Bian Y, et al. Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA. 2005;294:1634–46.

    Article  CAS  PubMed  Google Scholar 

  19. Wang YQ, Qi XW, Wang F, et al. Association between TGFBR1 polymorphisms and cancer risk: a meta-analysis of 35 case-control studies. PLoS One. 2012;7:e42899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Wu L, Sheng Y, et al. The association of polymorphisms on TGFBR1 and colorectal cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:2567–74.

    Article  CAS  PubMed  Google Scholar 

  21. Song P, Zhu H, Zhang D, et al. A genetic variant of miR-148a binding site in the SCRN1 3′-UTR is associated with susceptibility and prognosis of gastric cancer. Sci Rep. 2014;4:7080.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Du M, Ma L, et al. A functional variant in TP63 at 3q28 associated with bladder cancer risk by creating an miR-140-5p binding site. Int J Cancer. 2016;139:65–74.

    Article  CAS  PubMed  Google Scholar 

  23. Chang YY, Kuo WH, Hung JH, et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer. 2015;14:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He H, Wang L, Zhou W, et al. MicroRNA expression profiling in clear cell renal cell carcinoma: identification and functional validation of key miRNAs. PLoS One. 2015;10:e0125672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee H, Park CS, Deftereos G, et al. MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol. 2012;10:174.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang F, Chang JT, Kao CJ, et al. High Expression of miR-532-5p, a tumor suppressor, leads to better prognosis in ovarian cancer both in vivo and in vitro. Mol Cancer Ther. 2016;15:1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song X, Wang Z, Jin Y, et al. Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res. 2015;7:2254–61.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors alone are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Contributions

Jinfei Chen and Meilin Wang conceived and designed the experiments. Dongying Gu, Shuwei Li, and Mulong Du wrote the paper. Cuju Tang, Haiyan Chu, and Na Tong contributed reagents/materials/analysis tools. Dongying Gu, Zhengdong Zhang, and Jinfei Chen recruited samples. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Meilin Wang or Jinfei Chen.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, D., Li, S., Du, M. et al. A genetic variant located in the miR-532-5p-binding site of TGFBR1 is associated with the colorectal cancer risk. J Gastroenterol 54, 141–148 (2019). https://doi.org/10.1007/s00535-018-1490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-018-1490-y

Keywords

Navigation