Skip to main content

Advertisement

Log in

Modeling of stem cell dynamics in human colonic crypts in silico

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Several possible scenarios of cellular dynamics in human colonic crypts have been inferred from transgenic animal experiments. However, because of the discrepancy in size and physiology between humans and animals, quantitative predictions of tissue renewal and cancer development are difficult to execute.

Methods

A two-dimensional individual based model was developed for the first time to predict cellular dynamics in human colonic crypts. A simple scenario, in which stem cells were not fixed positionally, divide symmetrically and asymmetrically in a stochastic fashion in the lower part of the crypt, was proposed and implemented in the developed model. Numerical simulations of the model were executed in silico.

Results

By comparing the results of computational simulations with available experimental data, the presented scenario was consistent with various experimental evidence. Using this scenario, we simulated and visualized monoclonal conversion in the human colonic crypt. We also predicted that the propensity for monoclonal expansion of a mutant cell was largely dependent on the phenotype, the cell type, the position and the state of the crypt.

Conclusions

Using the computational framework developed in this study, model users can verify possible scenarios of stem cell dynamics occurring in human colonic crypts and quantitatively predict cell behavior. Its applicability in scenario verification and predictability makes it a valuable tool for elucidation of stem cell dynamics in human colonic crypts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    Article  CAS  PubMed  Google Scholar 

  2. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9.

    Article  CAS  PubMed  Google Scholar 

  3. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 2003;112:1351–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Yatabe Y, Tavaré S, Shibata D. Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci USA. 2001;98:10839–44.

    Article  CAS  PubMed  Google Scholar 

  5. Nicolas P, Kim KM, Shibata D, Tavaré S. The stem cell population of the human colon crypt: Analysis via methylation patterns. PLoS Comput Biol. 2007;3:0364–74.

    Article  CAS  Google Scholar 

  6. Graham TA, Humphries A, Sanders T, Rodriguezjusto M, Tadrous PJ, Preston SL, et al. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology. 2011;140:1241–50.

    Article  CAS  PubMed  Google Scholar 

  7. Fearon ER, Bommer GT. Ancestries hidden in plain sight: methylation patterns for clonal analysis. Gastroenterology. 2011;140:1139–43.

    Article  PubMed  Google Scholar 

  8. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc Natl Acad Sci USA. 2007;104:4008–13.

    Article  CAS  PubMed  Google Scholar 

  9. Boman BM, Fields JZ, Cavanaugh KL, Guetter A, Runquist OA. How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer. Cancer Res. 2008;68:3304–13.

    Article  CAS  PubMed  Google Scholar 

  10. Meineke FA, Potten CS, Loeffler M. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 2001;34:253–66.

    Article  CAS  PubMed  Google Scholar 

  11. van Leeuwen IMM, Mirams GR, Walter A, Fletcher A, Murray P, Osborne J, et al. An integrative computational model for intestinal tissue renewal. Cell Prolif. 2009;42:617–36.

    Article  PubMed  Google Scholar 

  12. Buske P, Galle J, Barker N, Aust G, Clevers H, Loeffler M. A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput Biol. 2011;7:e1001045.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Picioreanu C, Kreft JU, Van Loosdrecht MCM. Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol. 2004;70:3024–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Potten CS, Kellett M, Roberts SA, Rew DA, Wilson GD. Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut. 1992;33:71–8.

    Article  CAS  PubMed  Google Scholar 

  15. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  16. Fellous TG, McDonald SAC, Burkert J, Humphries A, Islam S, De-Alwis NMW, et al. A methodological approach to tracing cell lineage in human epithelial tissues. Stem Cells. 2009;27:1410–20.

    Article  CAS  PubMed  Google Scholar 

  17. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  18. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1:157–62.

    Article  CAS  PubMed  Google Scholar 

  19. Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nat Rev Cancer. 2004;4:197–205.

    Article  CAS  PubMed  Google Scholar 

  20. Wodarz D, Komarova NL. Computational biology of cancer: lecture notes and mathematical modeling. Singapore/Hackensack: World Scientific; 2005.

    Book  Google Scholar 

  21. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010;330:822–5.

    Article  CAS  PubMed  Google Scholar 

  23. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–44.

    Article  CAS  PubMed  Google Scholar 

  24. Walters K. Colonic stem cell data are consistent with the immortal model of stem cell division under non-random strand segregation. Cell Prolif. 2009;42:339–47.

    Article  CAS  PubMed  Google Scholar 

  25. Walters K. Parameter estimation for an immortal model of colonic stem cell division using approximate Bayesian computation. J Theoret Biol. 2012;306:104–14.

    Article  Google Scholar 

  26. Quyn AJ, Appleton PL, Carey FA, Steele RJC, Barker N, Clevers H, et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell. 2010;6:175–81.

    Article  CAS  PubMed  Google Scholar 

  27. Nishimura S, Wakabayashi N, Toyoda K, Kashima K, Mitsufuji S. Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci. 2003;48:1523–9.

    Article  CAS  PubMed  Google Scholar 

  28. Samuel S, Walsh R, Webb J, Robins A, Potten C, Mahida YR. Characterization of putative stem cells in isolated human colonic crypt epithelial cells and their interactions with myofibroblasts. Am J Physiol Cell Physiol. 2009;296:C296–305.

    Article  CAS  PubMed  Google Scholar 

  29. Becker L, Huang Q, Mashimo H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Sci World J. 2008;8:1168–76.

    Article  CAS  Google Scholar 

  30. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69:3382–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wong SY, Chiam KH, Lim CT, Matsudaira P. Computational model of cell positioning: directed and collective migration in the intestinal crypt epithelium. J R Soc Interface. 2010;7:S351–63.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Dunn SJ, Fletcher AG, Chapman SJ, Gavaghan DJ, Osborne JM. Modelling the role of the basement membrane beneath a growing epithelial monolayer. J Theoret Biol. 2012;298:82–91.

    Article  CAS  Google Scholar 

  33. Dunn SJ, Appleton PL, Nelson SA, Näthke IS, Gavaghan DJ, Osborne JM. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath. PLoS Comput Biol. 2012;8:e1002515.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Byrne H, Drasdo D. Individual-based and continuum models of growing cell populations: a comparison. J Math Biol. 2009;58:657–87.

    Article  PubMed  Google Scholar 

  35. Anti M, Armuzzi A, Morini S, Iascone E, Pignataro G, Coco C, et al. Severe imbalance of cell proliferation and apoptosis in the left colon and in the rectosigmoid tract in subjects with a history of large adenomas. Gut. 2001;48:238–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Takamasa Murano for his assistance with executing the simulation. This study is a part of the outcome of research performed under a Waseda University Grant for Special Research Projects (Project number: 2009B-212). We are also grateful for the helpful suggestions of three reviewers which greatly improved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tsuneda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, Y., Horita, N., Taniguchi, H. et al. Modeling of stem cell dynamics in human colonic crypts in silico. J Gastroenterol 49, 263–269 (2014). https://doi.org/10.1007/s00535-013-0887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0887-x

Keywords

Navigation