Skip to main content

Advertisement

Log in

Adiponectin deficiency enhanced the severity of cerulein-induced chronic pancreatitis in mice

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Adiponectin is recognized as an antiinflammatory and antifibrotic protein derived from adipocytes, and low serum adiponectin levels are present in obesity. Recent studies have highlighted the relationship between obesity and pancreatic diseases. However, the role of adiponectin in chronic pancreatitis remains uncertain. The aim of this study was to determine the effects of adiponectin in chronic pancreatitis.

Methods

We investigated the effects of adiponectin in experimental chronic pancreatitis by using adiponectin-knockout (APN-KO) mice. Chronic pancreatitis was induced by repeated hourly (6 times) intraperitoneal injections of 50 µg/kg cerulein three times per week for 4 weeks in wild-type (WT) and APN-KO mice. We evaluated the severity of chronic pancreatitis biochemically and morphologically.

Results

In cerulein-treated mice, macroscopically and histologically, severe pancreatic damage was observed in APN-KO mice compared with findings in WT mice. The histological scores for chronic pancreatitis, including glandular atrophy, pseudotubular complex, fibrosis, and total scores, were significantly higher in APN-KO mice than in WT mice. Activated pancreatic stellate cells and F4/80-positive pancreatic macrophages accumulated in the pancreas of APN-KO mice but not in WT mice. Overexpression of the mRNAs of transforming growth factor-β1, CD68, and monocyte chemoattractant protein-1 was noted in APN-KO mice but not in WT mice. The gene expression level of collagen1 (α1) tended to be higher in APN-KO mice than in WT mice, albeit insignificantly.

Conclusions

Adiponectin deficiency enhanced the severity of cerulein-induced chronic pancreatitis in mice. Hypoadiponectinemia could enhance the severity of chronic pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-SMA:

α-Smooth muscle actin

AMPK:

AMP-activated protein kinase

APN-KO:

Adiponectin knockout

BMI:

Body mass index

DBTC:

Dibutyltin dichloride

ECM:

Extracellular matrix

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HSCs:

Hepatic stellate cells

MCP-1:

Monocyte chemoattractant protein-1

NASH:

Nonalcoholic steatohepatitis

PPARα:

Peroxisome proliferator activated receptor-α

PSCs:

Pancreatic stellate cells

RT-PCR:

Reverse transcription-polymerase chain reaction

TGF-β1:

Transforming growth factor-β1

TNF-α:

Tumor necrosis factor-α

References

  1. Araki H, Nishihara T, Matsuda M, Fukuhara A, Kihara S, Funahashi T, et al. Adiponectin plays a protective role in caerulein-induced acute pancreatitis in mice fed a high-fat diet. Gut. 2008;57:1431–40.

    Article  CAS  PubMed  Google Scholar 

  2. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    Article  PubMed  Google Scholar 

  3. Martinez J, Johnson CD, Sanchez-Paya J, de Madaria E, Robles-Diaz G, Perez-Mateo M. Obesity is a definitive risk factor of severity and mortality in acute pancreatitis: an updated meta-analysis. Pancreatology. 2006;6:206–9.

    Article  CAS  PubMed  Google Scholar 

  4. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    Article  CAS  PubMed  Google Scholar 

  5. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380:24–30.

    Article  CAS  PubMed  Google Scholar 

  6. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:29–33.

    Article  CAS  PubMed  Google Scholar 

  7. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473–6.

    CAS  PubMed  Google Scholar 

  8. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y, et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology. 2003;125:1796–807.

    Article  CAS  PubMed  Google Scholar 

  9. Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol. 2008;28:863–70.

    Article  CAS  PubMed  Google Scholar 

  10. Ohashi K, Iwatani H, Kihara S, Nakagawa Y, Komura N, Fujita K, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:1910–7.

    Article  CAS  PubMed  Google Scholar 

  11. Musso G, Gambino R, Biroli G, Carello M, Faga E, Pacini G, et al. Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2005;100:2438–46.

    Article  CAS  PubMed  Google Scholar 

  12. Sarles H. Definitions and classifications of pancreatitis. Pancreas. 1991;6:470–4.

    Article  CAS  PubMed  Google Scholar 

  13. Ammann RW. A clinically based classification system for alcoholic chronic pancreatitis: summary of an international workshop on chronic pancreatitis. Pancreas. 1997;14:215–21.

    Article  CAS  PubMed  Google Scholar 

  14. Chang MC, Chang YT, Su TC, Yang WS, Chen CL, Tien YW, et al. Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas. 2007;35:16–21.

    Article  CAS  PubMed  Google Scholar 

  15. Adrych K, Smoczynski M, Stelmanska E, Korczynska J, Goyke E, Swierczynski J. Serum adiponectin and leptin concentrations in patients with chronic pancreatitis of alcoholic and nonalcoholic origin. Pancreas. 2008;36:120–4.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi M, Funahashi T, Shimomura I, Miyaoka K, Matsuzawa Y. Plasma leptin levels and body fat distribution. Horm Metab Res. 1996;28:751–2.

    Article  CAS  PubMed  Google Scholar 

  17. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8:731–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ethridge RT, Chung DH, Slogoff M, Ehlers RA, Hellmich MR, Rajaraman S, et al. Cyclooxygenase-2 gene disruption attenuates the severity of acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology. 2002;123:1311–22.

    Article  CAS  PubMed  Google Scholar 

  19. Neuschwander-Tetri BA, Bridle KR, Wells LD, Marcu M, Ramm GA. Repetitive acute pancreatic injury in the mouse induces procollagen alpha1(I) expression colocalized to pancreatic stellate cells. Lab Invest. 2000;80:143–50.

    Article  CAS  PubMed  Google Scholar 

  20. Neuschwander-Tetri BA, Burton FR, Presti ME, Britton RS, Janney CG, Garvin PR, et al. Repetitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. Dig Dis Sci. 2000;45:665–74.

    Article  CAS  PubMed  Google Scholar 

  21. Demols A, Van Laethem JL, Quertinmont E, Degraef C, Delhaye M, Geerts A, et al. Endogenous interleukin-10 modulates fibrosis and regeneration in experimental chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2002;282:G1105–12.

    CAS  PubMed  Google Scholar 

  22. Fukushima J, Kamada Y, Matsumoto H, Yoshida Y, Ezaki H, Takemura T, et al. Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res. 2009;39:724–38.

    Article  CAS  PubMed  Google Scholar 

  23. Nishihara T, Matsuda M, Araki H, Oshima K, Kihara S, Funahashi T, et al. Effect of adiponectin on murine colitis induced by dextran sulfate sodium. Gastroenterology. 2006;131:853–61.

    Article  CAS  PubMed  Google Scholar 

  24. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut. 1998;43:128–33.

    Article  CAS  PubMed  Google Scholar 

  25. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115:421–32.

    Article  CAS  PubMed  Google Scholar 

  26. Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DH, et al. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol. 1999;155:1087–95.

    CAS  PubMed  Google Scholar 

  27. Apte MV, Wilson JS. Stellate cell activation in alcoholic pancreatitis. Pancreas. 2003;27:316–20.

    Article  CAS  PubMed  Google Scholar 

  28. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol. 2005;166:1655–69.

    CAS  PubMed  Google Scholar 

  29. Buchholz M, Kestler HA, Holzmann K, Ellenrieder V, Schneiderhan W, Siech M, et al. Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype. J Mol Med. 2005;83:795–805.

    Article  CAS  PubMed  Google Scholar 

  30. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med. 1993;328:1828–35.

    Article  CAS  PubMed  Google Scholar 

  31. Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis––a homage to the role of activated fat-storing cells. Digestion. 1995;56:335–46.

    Article  CAS  PubMed  Google Scholar 

  32. Bachem MG, Meyer D, Schafer W, Riess U, Melchior R, Sell KM, et al. The response of rat liver perisinusoidal lipocytes to polypeptide growth regulator changes with their transdifferentiation into myofibroblast-like cells in culture. J Hepatol. 1993;18:40–52.

    Article  CAS  PubMed  Google Scholar 

  33. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, et al. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut. 1999;44:534–41.

    Article  CAS  PubMed  Google Scholar 

  34. Bachem MG, Sell KM, Melchior R, Kropf J, Eller T, Gressner AM. Tumor necrosis factor alpha (TNF alpha) and transforming growth factor beta 1 (TGF beta 1) stimulate fibronectin synthesis and the transdifferentiation of fat-storing cells in the rat liver into myofibroblasts. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63:123–30.

    Article  CAS  PubMed  Google Scholar 

  35. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278:2461–8.

    Article  CAS  PubMed  Google Scholar 

  36. Toyama T, Nakamura H, Harano Y, Yamauchi N, Morita A, Kirishima T, et al. PPARalpha ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem Biophys Res Commun. 2004;324:697–704.

    Article  CAS  PubMed  Google Scholar 

  37. Nakano S, Nagasawa T, Ijiro T, Inada Y, Tamura T, Maruyama K, et al. Bezafibrate prevents hepatic stellate cell activation and fibrogenesis in a murine steatohepatitis model, and suppresses fibrogenic response induced by transforming growth factor-beta1 in a cultured stellate cell line. Hepatol Res. 2008;38:1026–39.

    Article  CAS  PubMed  Google Scholar 

  38. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96:1723–32.

    CAS  PubMed  Google Scholar 

  39. Rollins BJ. Chemokines. Blood. 1997;90:909–28.

    CAS  PubMed  Google Scholar 

  40. Saurer L, Reber P, Schaffner T, Buchler MW, Buri C, Kappeler A, et al. Differential expression of chemokines in normal pancreas and in chronic pancreatitis. Gastroenterology. 2000;118:356–67.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao HF, Ito T, Gibo J, Kawabe K, Oono T, Kaku T, et al. Anti-monocyte chemoattractant protein 1 gene therapy attenuates experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Gut. 2005;54:1759–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusaku Tsutsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Araki, H., Watabe, K. et al. Adiponectin deficiency enhanced the severity of cerulein-induced chronic pancreatitis in mice. J Gastroenterol 45, 742–749 (2010). https://doi.org/10.1007/s00535-010-0205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0205-9

Keywords

Navigation