Skip to main content

Advertisement

Log in

Cytokine responses of intraepithelial lymphocytes are regulated by histamine H2 receptor

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Backgrounds

Histamine participates in the immune regulation of several gastrointestinal diseases. However, the effect of histamine on intestinal intraepithelial lymphocytes (IELs), the front line of the intestinal mucosal immune system, is not well understood. We examined whether histamine has a direct effect on cytokine production by IELs and the involvement of histamine receptor subtypes.

Methods

Murine IELs were activated by PMA plus ionomycin with/without histamine. Secreted cytokines were measured and compared with those of splenocytes. Intracellular cytokines were detected by flow cytometry. Expression of histamine receptor subtypes in IELs was examined by RT-PCR.

Results

Histamine H1 receptor (H1R), H2R, and H4R, but not H3R mRNA were expressed on IELs. Histamine significantly decreased Th1-cytokine (IFN-γ, TNF-α, and IL-2) and also IL-4 production in IELs as well as splenocytes. The selective H2R antagonist famotidine, but not the H1R antagonist pyrilamine nor the H3R/H4R antagonist thioperamide, competes with the inhibitory effect of histamine on these cytokine production in IELs. These suppressive effects of histamine were mimicked by a selective H2R/H4R agonist dimaprit. Further, these suppressive effects of histamine for Th1-cytokine and IL-4 did not accompany the enhancement of IL-10 production or IL-10 mRNA level in IELs. Intracellular cytokine analysis revealed that the number of IFN-γ-producing αβ T cells was significantly reduced by histamine in IELs.

Conclusions

Histamine has a direct suppressive effect on IEL-derived cytokines via H2R, which would have a crucial role in the suppression of local immunoregulation in the intestinal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IEL:

Intraepithelial lymphocyte

H2R:

Histamine H2 receptor

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

GPCRs:

G protein-coupled receptors

GALT:

Gastrointestinal associated lymphoid tissue

HDC:

Histidine l-decarboxylase

CBA:

Cytometric bead array

DC:

Dendritic cell

RT-PCR:

Reverse transcriptase-polymerase chain reaction

LPL:

Lamina propria lymphocyte

References

  1. Bischoff S, Crowe SE. Gastrointestinal food allergy: new insights into pathophysiology and clinical perspectives. Gastroenterology. 2005;128:1089–113.

    Article  PubMed  CAS  Google Scholar 

  2. Fox CC, Lazenby AJ, Moore WC, Yardley JH, Bayless TM, Lichtenstein LM. Enhancement of human intestinal mast cell mediator release in active ulcerative colitis. Gastroenterology. 1990;99:119–24.

    PubMed  CAS  Google Scholar 

  3. Knutson L, Ahrenstedt O, Odlind B, Hallgren R. The jejunal secretion of histamine is increased in active Crohn’s disease. Gastroenterology. 1990;98:849–54.

    PubMed  CAS  Google Scholar 

  4. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126:693–702.

    Article  PubMed  Google Scholar 

  5. Sander LE, Lorentz A, Sellge G, Coeffier M, Neipp M, Veres T, et al. Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract. Gut. 2006;55:498–504.

    Article  PubMed  CAS  Google Scholar 

  6. Leurs R, Smit MJ, Timmerman H. Molecular pharmacological aspects of histamine receptors. Pharmacol Ther. 1995;66:413–63.

    Article  PubMed  CAS  Google Scholar 

  7. Hough LB. Genomics meets histamine receptors: new subtypes, new receptors. Mol Pharmacol. 2001;59:415–9.

    PubMed  CAS  Google Scholar 

  8. Jutel M, Watanabe T, Klunker S, Akdis M, Thomet OA, Malolepszy J, et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature. 2001;413:420–5.

    Article  PubMed  CAS  Google Scholar 

  9. Elenkov IJ, Webster E, Papanicolaou DA, Fleisher TA, Chrousos GP, Wilder RL. Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J Immunol. 1998;161:2586–93.

    PubMed  CAS  Google Scholar 

  10. Osna N, Elliott K, Khan MM. The effects of histamine on interferon gamma production are dependent on the stimulatory signals. Int Immunopharmacol. 2001;1:135–45.

    Article  PubMed  CAS  Google Scholar 

  11. Sonobe Y, Nakane H, Watanabe T, Nakano K. Regulation of Con A-dependent cytokine production from CD4+ and CD8+ T lymphocytes by autosecretion of histamine. Inflamm Res. 2004;53:87–92.

    Article  PubMed  CAS  Google Scholar 

  12. Takamatsu S, Nakashima I, Nakano K. Modulation of endotoxin-induced histamine synthesis by cytokines in mouse bone marrow-derived macrophages. J Immunol. 1996;156:778–85.

    PubMed  CAS  Google Scholar 

  13. Masini E, Fabbroni V, Giannini L, Vannacci A, Messerini L, Perna F, et al. Histamine and histidine decarboxylase up-regulation in colorectal cancer: correlation with tumor stage. Inflamm Res. 2005;54(Suppl 1):S80–1.

    Article  PubMed  CAS  Google Scholar 

  14. Winterkamp S, Weidenhiller M, Otte P, Stolper J, Schwab D, Hahn EG, et al. Urinary excretion of N-methylhistamine as a marker of disease activity in inflammatory bowel disease. Am J Gastroenterol. 2002;97:3071–7.

    Article  PubMed  CAS  Google Scholar 

  15. Akdis CA, Blesken T, Akdis M, Wuthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest. 1998;102:98–106.

    Article  PubMed  CAS  Google Scholar 

  16. van der Pouw Kraan TC, Snijders A, Boeije LC, de Groot ER, Alewijnse AE, Leurs R, Aarden LA. Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J Clin Invest. 1998;102:1866–73.

    Google Scholar 

  17. Tomita K, Okabe S. Exogenous histamine stimulates colorectal cancer implant growth via immunosuppression in mice. J Pharmacol Sci. 2005;97:116–23.

    Article  PubMed  CAS  Google Scholar 

  18. Bolton E, King J, Morris DL. H2-antagonists in the treatment of colon and breast cancer. Semin Cancer Biol. 2000;10:3–10.

    Article  PubMed  CAS  Google Scholar 

  19. Kiyono H, Fujihashi K, Taguchi T, Aicher WK, McGhee JR. Regulatory functions for murine intraepithelial lymphocytes in mucosal responses. Immunol Res. 1991;10:324–30.

    Article  PubMed  CAS  Google Scholar 

  20. Mosley RL, Klein JR. A rapid method for isolating murine intestine intraepithelial lymphocytes with high yield and purity. J Immunol Methods. 1992;156:19–26.

    Article  PubMed  CAS  Google Scholar 

  21. Cheroutre H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu Rev Immunol. 2004;22:217–46.

    Article  PubMed  CAS  Google Scholar 

  22. Cheroutre H. IELs: enforcing law and order in the court of the intestinal epithelium. Immunol Rev. 2005;206:114–31.

    Article  PubMed  Google Scholar 

  23. Hayday A, Theodoridis E, Ramsburg E, Shires J. Intraepithelial lymphocytes: exploring the third way in immunology. Nat Immunol. 2001;2:997–1003.

    Article  PubMed  CAS  Google Scholar 

  24. Taguchi T, Aicher WK, Fujihashi K, Yamamoto M, McGhee JR, Bluestone JA, et al. Novel function for intestinal intraepithelial lymphocytes murine CD3+, gamma/delta TCR+ T cells produce IFN-gamma and IL-5. J Immunol. 1991;147:3736–44.

    PubMed  CAS  Google Scholar 

  25. Barrett TA, Gajewski TF, Danielpour D, Chang EB, Beagley KW, Bluestone JA. Differential function of intestinal intraepithelial lymphocyte subsets. J Immunol. 1992;149:1124–30.

    PubMed  CAS  Google Scholar 

  26. Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science. 1994;266:1253–5.

    Article  PubMed  CAS  Google Scholar 

  27. Taguchi T, McGhee JR, Coffman RL, Beagley KW, Eldridge JH, Takatsu K, et al. Analysis of Th1 and Th2 cells in murine gut-associated tissues frequencies of CD4+ and CD8+ T cells that secrete IFN-gamma and IL-5. J Immunol. 1990;145:68–77.

    PubMed  CAS  Google Scholar 

  28. Lundqvist C, Melgar S, Yeung MM, Hammarstrom S, Hammarstrom ML. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol. 1996;157:1926–34.

    PubMed  CAS  Google Scholar 

  29. Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut. 2006;55:469–77.

    Article  PubMed  CAS  Google Scholar 

  30. Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, Cai Z, et al. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing gamma delta T-cell antigen receptors. Proc Natl Acad Sci USA. 1993;90:8591–4.

    Article  PubMed  CAS  Google Scholar 

  31. Horio Y, Osawa S, Takagaki K, Hishida A, Furuta T, Ikuma M. Glutamine supplementation increases Th1-cytokine responses in murine intestinal intraepithelial lymphocytes. Cytokine. 2008;44:92–5.

    Article  PubMed  CAS  Google Scholar 

  32. Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R. Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther. 2005;314:1310–21.

    Article  PubMed  CAS  Google Scholar 

  33. Montufar-Solis D, Klein JR. An improved method for isolating intraepithelial lymphocytes (IELs) from the murine small intestine with consistently high purity. J Immunol Methods. 2006;308:251–4.

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi HK, Yoshida A, Iwagaki H, Yoshino T, Itoh H, Morichika T, et al. Histamine regulation of interleukin-18-initiating cytokine cascade is associated with down-regulation of intercellular adhesion molecule-1 expression in human peripheral blood mononuclear cells. J Pharmacol Exp Ther. 2002;300:227–35.

    Article  PubMed  CAS  Google Scholar 

  35. Mazzoni A, Young HA, Spitzer JH, Visintin A, Segal DM. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest. 2001;108:1865–73.

    PubMed  CAS  Google Scholar 

  36. Lefrancois L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J Immunol. 1991;147:1746–51.

    PubMed  CAS  Google Scholar 

  37. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.

    PubMed  CAS  Google Scholar 

  38. Akdis CA, Simons FE. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol. 2006;533:69–76.

    Article  PubMed  CAS  Google Scholar 

  39. Morichika T, Takahashi HK, Iwagaki H, Yoshino T, Tamura R, Yokoyama M, et al. Histamine inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production in an intercellular adhesion molecule-1- and B7.1-dependent manner. J Pharmacol Exp Ther. 2003;304:624–33.

    Article  PubMed  CAS  Google Scholar 

  40. Caron G, Delneste Y, Roelandts E, Duez C, Bonnefoy JY, Pestel J, et al. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol. 2001;167:3682–6.

    PubMed  CAS  Google Scholar 

  41. Lagier B, Lebel B, Bousquet J, Pene J. Different modulation by histamine of IL-4 and interferon-gamma (IFN-gamma) release according to the phenotype of human Th0, Th1 and Th2 clones. Clin Exp Immunol. 1997;108:545–51.

    Article  PubMed  CAS  Google Scholar 

  42. Osna N, Elliott K, Khan MM. Regulation of interleukin-10 secretion by histamine in TH2 cells and splenocytes. Int Immunopharmacol. 2001;1:85–96.

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe M, Hosoda Y, Okamoto S, Yamazaki M, Inoue N, Ueno Y, et al. CD45RChighCD4+ intestinal mucosal lymphocytes infiltrating in the inflamed colonic mucosa of a novel rat colitis model induced by TNB immunization. Clin Immunol Immunopathol. 1998;88:46–55.

    Article  PubMed  CAS  Google Scholar 

  44. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. Am J Pathol. 1997;150:823–32.

    PubMed  CAS  Google Scholar 

  45. Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G, Caruso R, et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn’s disease. Gastroenterology. 2005;128:687–94.

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi K, Tanaka S, Furuta K, Ichikawa A. Histamine H(2) receptor-mediated modulation of local cytokine expression in a mouse experimental tumor model. Biochem Biophys Res Commun. 2002;297:1205–10.

    Article  PubMed  CAS  Google Scholar 

  47. Kapoor S, Pal S, Sahni P, Dattagupta S, Kanti Chattopadhyay T. Effect of pre-operative short course famotidine on tumor infiltrating lymphocytes in colorectal cancer: a double blind, placebo controlled, prospective randomized study. J Surg Res. 2005;129:172–5.

    Article  PubMed  CAS  Google Scholar 

  48. Adams WJ, Lawson JA, Morris DL. Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. Gut. 1994;35:1632–6.

    Article  PubMed  CAS  Google Scholar 

  49. Svendsen LB, Ross C, Knigge U, Frederiksen HJ, Graversen P, Kjaergard J, et al. Cimetidine as an adjuvant treatment in colorectal cancer. A double-blind, randomized pilot study. Dis Colon Rectum. 1995;38:514–8.

    Article  PubMed  CAS  Google Scholar 

  50. Matsumoto S, Imaeda Y, Umemoto S, Kobayashi K, Suzuki H, Okamoto T. Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells. Br J Cancer. 2002;86:161–7.

    Article  PubMed  CAS  Google Scholar 

  51. Adams WJ, Morris DL. Pilot study—cimetidine enhances lymphocyte infiltration of human colorectal carcinoma: results of a small randomized control trial. Cancer. 1997;80:15–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Shigeru Kanaoka, Moriya Iwaizumi and Ken Sugimoto for their technical suggestions and help. This work was supported by grant-in-aid for Scientific Research (C) 20590738 and grant-in-aid for Exploratory Research 20659115, Japan Society for the Promotion of Science, and by a grant-in-aid from the Center of Excellence (COE) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsuhiro Ikuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagaki, K., Osawa, S., Horio, Y. et al. Cytokine responses of intraepithelial lymphocytes are regulated by histamine H2 receptor. J Gastroenterol 44, 285–296 (2009). https://doi.org/10.1007/s00535-009-0019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0019-9

Keywords

Navigation