Skip to main content

Advertisement

Log in

The role of Ly49E receptor expression on murine intraepithelial lymphocytes in intestinal cancer development and progression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Ly49E is a member of the Ly49 family of NK receptors and is distinct from other members of this family on the basis of its structural properties, expression pattern and ligand recognition. Importantly, Ly49E receptor expression is high on small intestinal and colonic intraepithelial lymphocytes (IELs). Intestinal IELs are regulators of the mucosal immune system and contribute to front-line defense at the mucosal barrier, including anti-tumor immune response. Whereas most Ly49 receptors have MHC class-I ligands, we showed that Ly49E is instead triggered by urokinase plasminogen activator (uPA). uPA has been extensively implicated in tumor development, where increased uPA expression correlates with poor prognosis. As such, we investigated the role of Ly49E receptor expression on intestinal IELs in the anti-tumor immune response. For this purpose, we compared Ly49E wild-type mice to Ly49E knockout mice in two established tumor models: ApcMin/+-mediated and azoxymethane-induced intestinal cancer. Our results indicate that Ly49E expression on IELs does not influence the development or progression of intestinal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOM:

Azoxymethane

DSS:

Dextran sodium sulfate

IEL:

Intestinal intraepithelial lymphocyte

KO:

Knockout

uPA:

Urokinase plasminogen activator

WT:

Wild-type

References

  1. Bissahoyo A, Pearsall RS, Hanlon K, Amann V, Hicks D et al (2005) Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol Sci 88:340–345

    Article  CAS  PubMed  Google Scholar 

  2. Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 22:191–197

    Article  PubMed  PubMed Central  Google Scholar 

  3. McClellan JL, Davis JM, Steiner JL, Day SD, Steck SE et al (2012) Intestinal inflammatory cytokine response in relation to tumorigenesis in the Apc(Min/+) mouse. Cytokine 57:113–119

    Article  CAS  PubMed  Google Scholar 

  4. Young PE, Womeldorph CM, Johnson EK, Maykel JA, Brucher B et al (2014) Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: current status and challenges. J Cancer 5:262–271

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koido S, Ohkusa T, Homma S, Namiki Y, Takakura K et al (2013) Immunotherapy for colorectal cancer. World J Gastroenterol 19:8531–8542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R (2002) Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA 99:14338–14343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts AI, O’Connell SM, Biancone L, Brolin RE, Ebert EC (1993) Spontaneous cytotoxicity of intestinal intraepithelial lymphocytes: clues to the mechanism. Clin Exp Immunol 94:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ebert EC, Panja A, Praveen R (2009) Human intestinal intraepithelial lymphocytes and epithelial cells coinduce interleukin-8 production through the CD2–CD58 interaction. Am J Physiol Gastrointest Liver Physiol 296:G671–G677

    Article  CAS  PubMed  Google Scholar 

  10. Ebert EC, Groh V (2008) Dissection of spontaneous cytotoxicity by human intestinal intraepithelial lymphocytes: mIC on colon cancer triggers NKG2D-mediated lysis through Fas ligand. Immunology 124:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baker K, Foulkes WD, Jass JR (2009) MSI-H colorectal cancers preferentially retain and expand intraepithelial lymphocytes rather than peripherally derived CD8+ T cells. Cancer Immunol Immunother 58:135–144

    Article  CAS  PubMed  Google Scholar 

  12. Yokoyama WM, Plougastel BF (2003) Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3:304–316

    Article  CAS  PubMed  Google Scholar 

  13. Taveirne S, Filtjens J, Van Ammel E, De Colvenaer V, Kerre T et al (2011) Inhibitory receptors specific for MHC class I educate murine NK cells but not CD8alphaalpha intestinal intraepithelial T lymphocytes. Blood 118:339–347

    Article  CAS  PubMed  Google Scholar 

  14. Van Acker A, Filtjens J, Van Welden S, Taveirne S, Van Ammel E et al (2014) Ly49E expression on CD8alphaalpha-expressing intestinal intraepithelial lymphocytes plays no detectable role in the development and progression of experimentally induced inflammatory bowel diseases. PLoS One 9:e110015

    Article  PubMed  PubMed Central  Google Scholar 

  15. Van Den Broeck T, Van Ammel E, Delforche M, Taveirne S, Kerre T et al (2013) Differential Ly49e expression pathways in resting versus TCR-activated intraepithelial gammadelta T cells. J Immunol 190:1982–1990

    Article  Google Scholar 

  16. Van Den Broeck T, Stevenaert F, Taveirne S, Debacker V, Vangestel C et al (2008) Ly49E-dependent inhibition of natural killer cells by urokinase plasminogen activator. Blood 112:5046–5051

    Article  Google Scholar 

  17. de Bruin PA, Griffioen G, Verspaget HW, Verheijen JH, Dooijewaard G et al (1988) Plasminogen activator profiles in neoplastic tissues of the human colon. Cancer Res 48:4520–4524

    PubMed  Google Scholar 

  18. Duffy MJ (2005) Predictive markers in breast and other cancers: a review. Clin Chem 51:494–503

    Article  CAS  PubMed  Google Scholar 

  19. Protiva P, Sordat I, Chaubert P, Saraga E, Tran-Thang C et al (1998) Alterations in plasminogen activation correlate with epithelial cell dysplasia grading in colorectal adenomas. Br J Cancer 77:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sim PS, Stephens RW, Fayle DR, Doe WF (1988) Urokinase-type plasminogen activator in colorectal carcinomas and adenomatous polyps: quantitative expression of active and proenzyme. Int J Cancer 42:483–488

    Article  CAS  PubMed  Google Scholar 

  21. Sordat I, Chaubert P, Protiva P, Guillou L, Mazzucchelli L et al (1997) In situ stromal expression of the urokinase/plasmin system correlates with epithelial dysplasia in colorectal adenomas. Am J Pathol 150:283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzumiya J, Hasui Y, Kohga S, Sumiyoshi A, Hashida S et al (1988) Comparative study of plasminogen activator antigens in colonic carcinomas and adenomas. Int J Cancer 42:627–632

    Article  CAS  PubMed  Google Scholar 

  23. Ganesh S, Sier CF, Griffioen G, Vloedgraven HJ, de Boer A et al (1994) Prognostic relevance of plasminogen activators and their inhibitors in colorectal cancer. Cancer Res 54:4065–4071

    CAS  PubMed  Google Scholar 

  24. Yang JL, Seetoo D, Wang Y, Ranson M, Berney CR et al (2000) Urokinase-type plasminogen activator and its receptor in colorectal cancer: independent prognostic factors of metastasis and cancer-specific survival and potential therapeutic targets. Int J Cancer 89:431–439

    Article  CAS  PubMed  Google Scholar 

  25. Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR et al (2005) Plasminogen activation and cancer. Thromb Haemost 93:676–681

    CAS  PubMed  Google Scholar 

  26. Killeen S, Hennessey A, El Hassan Y, Waldron B (2008) The urokinase plasminogen activator system in cancer: a putative therapeutic target? Drug News Perspect 21:107–116

    Article  CAS  PubMed  Google Scholar 

  27. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Zhang Q (2015) Application of the Apc(Min/+) mouse model for studying inflammation-associated intestinal tumor. Biomed Pharmacother 71:216–221

    Article  CAS  PubMed  Google Scholar 

  29. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S et al (2011) The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Neufert C, Becker C, Neurath MF (2007) An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2:1998–2004

    Article  CAS  PubMed  Google Scholar 

  31. Filtjens J, Taveirne S, Van Acker A, Van Ammel E, Vanhees M et al (2013) Abundant stage-dependent Ly49E expression by liver NK cells is not essential for their differentiation and function. J Leukoc Biol 93:699–711

    Article  CAS  PubMed  Google Scholar 

  32. Van Beneden K, De Creus A, Stevenaert F, Debacker V, Plum J et al (2002) Expression of inhibitory receptors Ly49E and CD94/NKG2 on fetal thymic and adult epidermal TCR V gamma 3 lymphocytes. J Immunol 168:3295–3302

    Article  PubMed  Google Scholar 

  33. Fraser KP, Gays F, Robinson JH, van Beneden K, Leclercq G et al (2002) NK cells developing in vitro from fetal mouse progenitors express at least one member of the Ly49 family that is acquired in a time-dependent and stochastic manner independently of CD94 and NKG2. Eur J Immunol 32:868–878

    Article  CAS  PubMed  Google Scholar 

  34. Hildenbrand R, Allgayer H, Marx A, Stroebel P (2010) Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin Investig Drugs 19:641–652

    Article  CAS  PubMed  Google Scholar 

  35. Puppa MJ, White JP, Sato S, Cairns M, Baynes JW et al (2011) Gut barrier dysfunction in the Apc(Min/+) mouse model of colon cancer cachexia. Biochim Biophys Acta 1812:1601–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCart AE, Vickaryous NK, Silver A (2008) Apc mice: models, modifiers and mutants. Pathol Res Pract 204:479–490

    Article  PubMed  Google Scholar 

  37. Marsh L, Coletta PL, Hull MA, Selby PJ, Carding SR (2012) Altered intestinal epithelium-associated lymphocyte repertoires and function in ApcMin/+ mice. Int J Oncol 40:243–250

    CAS  PubMed  Google Scholar 

  38. Ploplis VA, Tipton H, Menchen H, Castellino FJ (2007) A urokinase-type plasminogen activator deficiency diminishes the frequency of intestinal adenomas in ApcMin/+ mice. J Pathol 213:266–274

    Article  CAS  PubMed  Google Scholar 

  39. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki R, Kohno H, Sugie S, Tanaka T (2005) Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane. Histol Histopathol 20:483–492

    CAS  PubMed  Google Scholar 

  41. Matsuda S, Yamane T, Hamaji M (1998) CD4- and TCRalphabeta-positive T lymphocytes predominantly infiltrated into well-moderately differentiated colon adenocarcinoma tissues. Jpn J Clin Oncol 28:97–103

    Article  CAS  PubMed  Google Scholar 

  42. Herszenyi L, Barabas L, Hritz I, Istvan G, Tulassay Z (2014) Impact of proteolytic enzymes in colorectal cancer development and progression. World J Gastroenterol 20:13246–13257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Bruin PA, Griffioen G, Verspaget HW, Verheijen JH, Lamers CB (1987) Plasminogen activators and tumor development in the human colon: activity levels in normal mucosa, adenomatous polyps, and adenocarcinomas. Cancer Res 47:4654–4657

    PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Ria Cornelissen and Leen Pieters (Department of Basic Medical Sciences, Ghent University, Ghent, Belgium) for their aid in immunofluorescent staining of tumor sections.

Funding

This work was supported by grants from the Foundation against Cancer, a foundation of public interest (2014-214) (G. Leclercq), by the Research Fund—Belgium (FWO) (G.0187.13N) (G. Leclercq), by the Interuniversity Attraction Pole (IUAP) grant T-Time from the Belspo Agency (Project P7/39) (B. Vandekerckhove, T. Taghon, G. Leclercq), and by the BOF of Ghent University (BOF11/GOA/005) (J. Plum, G. Leclercq, B. Vandekerckhove, T. Taghon). A. Van Acker and J. Filtjens are supported by the Institute for the Promotion of Innovation through Science and Technology Flanders (IWT-Vlaanderen). S. Taveirne and T. Kerre are supported by the FWO. D. Elewaut is supported by the Research Fund—Flanders (FWO) and the Research Council of Ghent University. D. Elewaut is also a member of a multidisciplinary research platform (MRP) of Ghent University and is supported by Interuniversity Attraction Pole (IUAP) grant Devrepair from the Belspo Agency (Project P7/07). E. Louagie is supported by Interuniversity Attraction Pole (IUAP) grant Devrepair from the Belspo Agency (Project P7/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Leclercq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Acker, A., Louagie, E., Filtjens, J. et al. The role of Ly49E receptor expression on murine intraepithelial lymphocytes in intestinal cancer development and progression. Cancer Immunol Immunother 65, 1365–1375 (2016). https://doi.org/10.1007/s00262-016-1894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1894-6

Keywords

Navigation