Skip to main content

Advertisement

Log in

Preoperative evaluation of pancreatic adenocarcinoma

  • Review Article
  • Published:
Journal of Hepato-Biliary-Pancreatic Surgery

Abstract

The preoperative evaluation of resectability for pancreatic cancer fails to identify up to 25% of patients who are unfortunately found to be unresectable at surgical exploration. Inoperative findings in this circumstance is usually due to either small volume metastatic disease or regional tumor invasion. While advances in computed tomography (CT) technology has increased accuracy of local tumor extent, occult metastatic disease remains a common problem. Although 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been demonstrated to be useful in the staging of many malignancies (e.g. esophageal cancer, recurrent colorectal cancer, lung cancer), it has not been found to significantly increase the accuracy of determining resectability preoperatively in pancreatic cancer, especially with regard to detection of small volume metastatic disease. There are a variety of pancreatic cancer-specific antigens which are being developed as a method for targeted molecular imaging; we provide preliminary data targeting the integrin αvβ6 to demonstrate the potential feasibility of this approach. Further developments may allow the accurate determination of patients with resectable pancreatic cancer, and more importantly, those with unresectable disease that may forego unnecessary surgery, the associated morbidity, and the subsequent delay of appropriate therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106–130.

    PubMed  Google Scholar 

  2. Haller DG. New perspectives in the management of pancreas cancer. Semin Oncol 2003;30(4 Suppl 11):3–10.

    Article  PubMed  CAS  Google Scholar 

  3. Ellsmere J, Mortele K, Sahani D, et al. Does multidetector-row CT eliminate the role of diagnostic laparoscopy in assessing the resectability of pancreatic head adenocarcinoma? Surg Endosc 2005;19:369–373.

    Article  PubMed  CAS  Google Scholar 

  4. Gulliver DJ, Baker ME, Cheng CA, et al. Malignant biliary obstruction: efficacy of thin-section dynamic CT in determining resectability. AJR Am J Roentgenol 1992;159:503–507.

    PubMed  CAS  Google Scholar 

  5. Prokesch RW, Chow LC, Beaulieu CF, et al. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology 2002;224:764–768.

    Article  PubMed  Google Scholar 

  6. Saldinger PF, Reilly M, Reynolds K, et al. Is CT angiography sufficient for prediction of resectability of periampullary neoplasms? J Gastrointest Surg 2000;4:233–237; discussion 238–9.

    Article  PubMed  CAS  Google Scholar 

  7. Spitz FR, Abbruzzese JL, Lee JE, et al. Preoperative and postoperative chemoradiation strategies in patients treated with pancreaticoduodenectomy for adenocarcinoma of the pancreas. J Clin Oncol 1997;15:928–937.

    PubMed  CAS  Google Scholar 

  8. Steinberg WM, Barkin J, Bradley EL 3rd, et al. Workup of a patient with a mass in the head of the pancreas. Pancreas 1998;17:24–30.

    Article  PubMed  CAS  Google Scholar 

  9. Varadhachary GR, Tamm EP, Crane C, et al. Borderline resectable pancreatic cancer. Curr Treat Options Gastroenterol 2005;8:377–384.

    Article  PubMed  Google Scholar 

  10. Warshaw AL, Gu ZY, Wittenberg J, Waltman AC. Preoperative staging and assessment of resectability of pancreatic cancer. Arch Surg 1990;125:230–233.

    PubMed  CAS  Google Scholar 

  11. Li H, Zeng MS, Zhou KR, et al. Pancreatic adenocarcinoma: the different CT criteria for peripancreatic major arterial and venous invasion. J Comput Assist Tomogr 2005;29:170–175.

    Article  PubMed  Google Scholar 

  12. Harris JP, Nelson RC. Abdominal imaging with multidetector computed tomography: state of the art. J Comput Assist Tomogr 2004;28(Suppl 1):S17–S19.

    Article  PubMed  Google Scholar 

  13. Horton KM, Fishman EK. Adenocarcinoma of the pancreas: CT imaging. Radiol Clin North Am 2002;40:1263–1272.

    Article  PubMed  Google Scholar 

  14. Kalra MK, Maher MM, Mueller PR, Saini S. State-of-theart imaging of pancreatic neoplasms. Br J Radiol 2003;76:857–865.

    Article  PubMed  CAS  Google Scholar 

  15. Smith SL, Rajan PS. Imaging of pancreatic adenocarcinoma with emphasis on multidetector CT. Clin Radiol 2004;59:26–38.

    Article  PubMed  CAS  Google Scholar 

  16. Ishiguchi T, Maruyama K, Fukatsu H, Ishigaki T. Radiologic diagnosis of pancreatic carcinoma. Semin Surg Oncol 1998;15:23–32.

    Article  PubMed  CAS  Google Scholar 

  17. Iacobuzio-Donahue CA, Ryu B, Hruban RH, Kern SE. Exploring the host desmoplastic response to pancreatic carcinoma: gene expression of stromal and neoplastic cells at the site of primary invasion. Am J Pathol 2002;160:91–99.

    PubMed  Google Scholar 

  18. Yachida S, Fukushima N, Nakanishi K, et al. Minute pancreatic adenocarcinoma presenting with stenosis of the main pancreatic duct. Pathol Int 2002;52:607–611.

    Article  PubMed  Google Scholar 

  19. Clarke DL, Thomson SR, Madiba TE, Sanyika C. Preoperative imaging of pancreatic cancer: a management-oriented approach. J Am Coll Surg 2003;196:119–129.

    Article  PubMed  Google Scholar 

  20. Diehl SJ, Lehmann KJ, Sadick M, et al. Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 1998;206:373–378.

    PubMed  CAS  Google Scholar 

  21. Legmann P, Vignaux O, Dousset B, et al. Pancreatic tumors: comparison of dual-phase helical CT and endoscopic sonography. AJR Am J Roentgenol 1998;170:1315–1322.

    PubMed  CAS  Google Scholar 

  22. Lu DS, Reber HA, Krasny RM, et al. Local staging of pancreatic cancer: criteria for unresectability of major vessels as revealed by pancreatic-phase, thin-section helical CT. AJR Am J Roentgenol 1997;168:1439–1443.

    PubMed  CAS  Google Scholar 

  23. Conlon KC, Dougherty E, Klimstra DS, et al. The value of minimal access surgery in the staging of patients with potentially resectable peripancreatic malignancy. Ann Surg 1996;223:134–140.

    Article  PubMed  CAS  Google Scholar 

  24. Friess H, Kleeff J, Silva JC, et al. The role of diagnostic laparoscopy in pancreatic and periampullary malignancies. J Am Coll Surg 1998;186:675–682.

    Article  PubMed  CAS  Google Scholar 

  25. Holzman MD, Reintgen KL, Tyler DS, Pappas TN. The role of laparoscopy in the management of suspected pancreatic and periampullary malignancies. J Gastrointest Surg 1997;1:236–243; discussion 243-244.

    Article  PubMed  CAS  Google Scholar 

  26. Pisters PW, Lee JE, Vauthey JN, et al. Laparoscopy in the staging of pancreatic cancer. Br J Surg 2001;88:325–337.

    Article  PubMed  CAS  Google Scholar 

  27. Bipat S, Phoa SS, van Delden OM, et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J Comput Assist Tomogr 2005;29:438–445.

    Article  PubMed  Google Scholar 

  28. Rumstadt B, Schwab M, Schuster K, et al. The role of laparoscopy in the preoperative staging of pancreatic carcinoma. J Gastrointest Surg 1997;1:245–250.

    Article  PubMed  CAS  Google Scholar 

  29. Vargas R, Nino-Murcia M, Trueblood W, Jeffrey RB Jr. MDCT in pancreatic adenocarcinoma: prediction of vascular invasion and resectability using a multiphasic technique with curved planar reformations. AJR Am J Roentgenol 2004;182:419–425.

    PubMed  Google Scholar 

  30. Reddy KR, Levi J, Livingstone A, et al. Experience with staging laparoscopy in pancreatic malignancy. Gastrointest Endosc 1999; 49(4 Pt 1):498–503.

    Article  PubMed  CAS  Google Scholar 

  31. Jones EC, Chezmar JL, Nelson RC, Bernardino ME. The frequency and significance of small (less than or equal to 15 mm) hepatic lesions detected by CT. AJR Am J Roentgenol 1992;158:535–539.

    PubMed  CAS  Google Scholar 

  32. Michl P, Pauls S, Gress TM. Evidence-based diagnosis and staging of pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20:227–251.

    Article  PubMed  Google Scholar 

  33. Roche CJ, Hughes ML, Garvey CJ, et al. CT and pathologic assessment of prospective nodal staging in patients with ductal adenocarcinoma of the head of the pancreas. AJR Am J Roentgenol 2003;180:475–480.

    PubMed  Google Scholar 

  34. Acton PD, Zhuang H, Alavi A. Quantification in PET. Radiol Clin North Am 2004;42:1055–1062, viii.

    Article  PubMed  Google Scholar 

  35. Nichols MT, Russ PD, Chen YK. Pancreatic imaging: current and emerging technologies. Pancreas 2006;33:211–220.

    Article  PubMed  Google Scholar 

  36. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 1993;72:2979–2985.

    Article  PubMed  CAS  Google Scholar 

  37. Ito T, Noguchi Y, Satoh S, et al. Expression of facilitative glucose transporter isoforms in lung carcinomas: its relation to histologic type, differentiation grade, and tumor stage. Mod Pathol 1998;11:437–443.

    PubMed  CAS  Google Scholar 

  38. Reske SN, Grillenberger KG, Glatting G, et al. Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med 1997;38:1344–1348.

    PubMed  CAS  Google Scholar 

  39. Higashi T, Tamaki N, Torizuka T, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med 1998;39:1727–1735.

    PubMed  CAS  Google Scholar 

  40. Keogan MT, Tyler D, Clark L, et al. Diagnosis of pancreatic carcinoma: role of FDG PET. AJR Am J Roentgenol 1998;171:1565–1570.

    PubMed  CAS  Google Scholar 

  41. Friess H, Langhans J, Ebert M, et al. Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-D-glucose positron emission tomography. Gut 1995;36:771–777.

    Article  PubMed  CAS  Google Scholar 

  42. Ho CL, Dehdashti F, Griffeth LK, et al. FDG-PET evaluation of indeterminate pancreatic masses. J Comput Assist Tomogr 1996;20:363–369.

    Article  PubMed  CAS  Google Scholar 

  43. Inokuma T, Tamaki N, Torizuka T, et al. Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US. Radiology 1995;195:345–352.

    PubMed  CAS  Google Scholar 

  44. Klever P, Bares R, Fass J, et al. PET with fluorine-18 deoxyglucose for pancreatic disease. Lancet 1992;340:1158–1159.

    Article  PubMed  CAS  Google Scholar 

  45. Stollfuss JC, Glatting G, Friess H, et al. 2-(Fluorine-18)-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology 1995;195:339–344.

    PubMed  CAS  Google Scholar 

  46. Rose DM, Delbeke D, Beauchamp RD, et al. 18 Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg 1999;229:729–737; discussion 737–8.

    Article  PubMed  CAS  Google Scholar 

  47. Sendler A, Avril N, Helmberger H, et al. Preoperative evaluation of pancreatic masses with positron emission tomography using 18F-fluorodeoxyglucose: diagnostic limitations. World J Surg 2000;24:1121–1129.

    Article  PubMed  CAS  Google Scholar 

  48. Delbeke D, Rose DM, Chapman WC, et al. Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 1999;40:1784–1791.

    PubMed  CAS  Google Scholar 

  49. Nakamoto Y, Higashi T, Sakahara H, et al. Contribution of PET in the detection of liver metastases from pancreatic tumours. Clin Radiol 1999;54:248–252.

    Article  PubMed  CAS  Google Scholar 

  50. Nishiyama Y, Yamamoto Y, Yokoe K, et al. Contribution of whole body FDG-PET to the detection of distant metastasis in pancreatic cancer. Ann Nucl Med 2005;19:491–497.

    Article  PubMed  Google Scholar 

  51. Imdahl A, Nitzsche E, Krautmann F, et al. Evaluation of positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose for the differentiation of chronic pancreatitis and pancreatic cancer. Br J Surg 1999;86:194–199.

    Article  PubMed  CAS  Google Scholar 

  52. Yokoyama Y, Nagino M, Hiromatsu T, et al. Intense PET signal in the degenerative necrosis superimposed on chronic pancreatitis. Pancreas 2005;31:192–194.

    Article  PubMed  Google Scholar 

  53. Goh BK, Tan YM, Chung YF. Utility of fusion CT-PET in the diagnosis of small pancreatic carcinoma. World J Gastroenterol 2005;11:3800–3802.

    PubMed  Google Scholar 

  54. Heinrich S, Goerres GW, Schafer M, et al. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg 2005;242:235–243.

    Article  PubMed  Google Scholar 

  55. Herlyn M, Steplewski Z, Herlyn D, Koprowski H. Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci USA 1979;76:1438–1442.

    Article  PubMed  CAS  Google Scholar 

  56. Magnani JL, Brockhaus M, Smith DF, et al. A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma. Science 1981;212:55–56.

    Article  PubMed  CAS  Google Scholar 

  57. Lamerz R. Role of tumour markers, cytogenetics. Ann Oncol 1999;10(Suppl 4):145–149.

    Article  PubMed  Google Scholar 

  58. Benini L, Cavallini G, Zordan D, et al. A clinical evaluation of monoclonal (CA19-9, CA50, CA12-5) and polyclonal (CEA, TPA) antibody-defined antigens for the diagnosis of pancreatic cancer. Pancreas 1988;3:61–66.

    Article  PubMed  CAS  Google Scholar 

  59. Malesci A, Tommasini MA, Bonato C, et al. Determination of CA 19-9 antigen in serum and pancreatic juice for differential diagnosis of pancreatic adenocarcinoma from chronic pancreatitis. Gastroenterology 1987;92:60–67.

    PubMed  CAS  Google Scholar 

  60. Paganuzzi M, Onetto M, Marroni P, et al. CA 19-9 and CA 50 in benign and malignant pancreatic and biliary diseases. Cancer 1988;61:2100–2108.

    Article  PubMed  CAS  Google Scholar 

  61. Pasquali C, Sperti C, D’Andrea AA, et al. Evaluation of carbohydrate antigens 19-9 and 12-5 in patients with pancreatic cancer. Pancreas 1987;2:34–37.

    Article  PubMed  CAS  Google Scholar 

  62. Schlieman MG, Ho HS, Bold RJ. Utility of tumor markers in determining resectability of pancreatic cancer. Arch Surg 2003;138:951–955; discussion 955–6.

    Article  PubMed  Google Scholar 

  63. Magnani JL, Steplewski Z, Koprowski H, Ginsburg V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 1983;43:5489–5492.

    PubMed  CAS  Google Scholar 

  64. Safi F, Schlosser W, Falkenreck S, Beger HG. Prognostic value of CA 19-9 serum course in pancreatic cancer. Hepatogastroenterology 1998;45:253–259.

    PubMed  CAS  Google Scholar 

  65. Egawa S, Takeda K, Fukuyama S, et al. Clinicopathological aspects of small pancreatic cancer. Pancreas 2004;28:235–240.

    Article  PubMed  Google Scholar 

  66. Riker A, Libutti SK, Bartlett DL. Advances in the early detection, diagnosis, and staging of pancreatic cancer. Surg Oncol 1997;6:157–169.

    Article  PubMed  CAS  Google Scholar 

  67. Mann DV, Edwards R, Ho S, et al. Elevated tumour marker CA19-9: clinical interpretation and influence of obstructive jaundice. Eur J Surg Oncol 2000;26:474–479.

    Article  PubMed  CAS  Google Scholar 

  68. Cerwenka H, Aigner R, Quehenberger F, et al. Preoperative differential diagnosis of benign and malignant pancreatic lesions-the value of pancreatic secretory trypsin inhibitor, procarboxypeptidase B, CA19-9 and CEA. Hepatogastroenterology 1997;44:1117–1121.

    PubMed  CAS  Google Scholar 

  69. Koopmann J, Fedarko NS, Jain A, et al. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2004;13:487–491.

    PubMed  CAS  Google Scholar 

  70. Koopmann J, Rosenzweig CN, Zhang Z, et al. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res 2006;12:442–446.

    Article  PubMed  CAS  Google Scholar 

  71. Li Z, Sclabas GM, Peng B, et al. Overexpression of synucleingamma in pancreatic adenocarcinoma. Cancer 2004;101:58–65.

    Article  PubMed  CAS  Google Scholar 

  72. Sipos B, Hahn D, Carceller A, et al. Immunohistochemical screening for beta6-integrin subunit expression in adenocarcinomas using a novel monoclonal antibody reveals strong upregulation in pancreatic ductal adenocarcinomas in vivo and in vitro. Histopathology 2004;45:226–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Parsons, C.M., Sutcliffe, J.L. & Bold, R.J. Preoperative evaluation of pancreatic adenocarcinoma. J Hepatobiliary Pancreat Surg 15, 429–435 (2008). https://doi.org/10.1007/s00534-007-1240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00534-007-1240-7

Key words

Navigation