Skip to main content
Log in

Sr–Nd isotopes of Sabalan Volcano, NW Iran: insights into the origin of collisional adakites and geodynamic implications

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Late Miocene-Quaternary adakitic rocks are widely distributed in northwestern Iran and are a key component of magmatism in the Turkish–Iranian Plateau of the collision zone between Eurasia and Arabia. Igneous rocks with adakitic affinity are distributed over large parts of northwestern Iran, eastern Turkey, and the Lesser Caucasus, and post-date a presumed slab break-off event at c. 10 Ma. Here, we present whole-rock Sr–Nd isotopic data for 4.5–0.149 Myr adakitic rocks of Sabalan volcano, NW Iran. These rocks are characterized by near-identical 87Sr/86Sr = 0.7044 to 0.7045 and ɛNd = + 2.24 to + 2.76. This is interpreted to indicate that Sabalan magmas were primarily generated by melting juvenile intrusions at the base of thickened lower crust and that assimilation of upper continental crustal rocks only played a minor role in their evolution relative to fractional crystallization. The delay between slab break-off beneath the Neo-Tethyan suture zone and magmatic activity at Sabalan is indicative for asthenospheric melting being triggered by small-scale mantle convection underneath the Turkish-Iranian Plateau. A preferred scenario is that the detached slab heated up in the mantle causing dehydration, and ascending fluids consequently lowered the viscosity of the mantle. Subsequently, the delaminated lower lithosphere was replaced by asthenospheric mantle which heated and partially melted lower crustal rocks to generate adakitic magmas. Collectively, these events occurred after a significant temporal hiatus that followed the earlier slab break-off event when remnants of subducted Neo-Tethyan lithosphere became detached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and in Online Appendixes.

References

  • Ahmadvand A, Ghorbani MR, Mokhtari MAA, Chen Y, Amidon W, Santos JF, Paydari M (2021) Lithospheric mantle, asthenosphere, slab and crustal contribution to petrogenesis of Eocene to Miocene volcanic rocks from the west Alborz Magmatic Assemblage, SE Ahar, Iran. Geol Mag 158:375–406. https://doi.org/10.1017/S0016756820000527

    Article  Google Scholar 

  • Alberti AA, Stolfa D (1973) First data on the Savalan volcano (eastern Azerbaijan, Iran): the upper series. Rend Soc Ital Miner Petrol 29:369–385

    Google Scholar 

  • Arculus RJ (2003) Use and abuse of the term calcalkaline and calcalkalic. J Petrol 44:929–935

    Article  Google Scholar 

  • Asadi S (2018) Triggers for the generation of post–collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: new constraints from elemental and isotopic (Sr–Nd–Hf–O) data. Gondwana Res 64:97–121

    Article  Google Scholar 

  • Azizi H, Asahara Y, Tsuboi M, Takemurac K, Razyani S (2014) The role of heterogenetic mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran. Geochemistry 74:87–97

    Article  Google Scholar 

  • Azizi H, Stern RJ, Topuz G, Asahara Y, Shafaii MH (2019) Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in normal continental crust. Lithos 346–347:105151. https://doi.org/10.1016/j.lithos.2019.105151

    Article  Google Scholar 

  • Castillo PR (2012) Adakite petrogenesis. Lithos 134:304–316

    Article  Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petr 134:33–51

    Article  Google Scholar 

  • Chaharlang R, Ducea MN, Ghalamghash J (2020) Geochemical evidences for quantifying crustal thickness over time in the Urumieh-Dokhtar magmatic arc (Iran). Lithos 374–375:105723

    Article  Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162–63:70–87

    Article  Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Melkonyan R, Pang KN, Lee HY, Wang KL, Mohammadi SS, Khatib MM (2017) Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: implications for crustal growth in the Tethyan orogenic belt. J Asian Earth Sci 145:652–669

    Article  Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Coban H, Karsli O, Caran S, Yilmaz K (2020) Sediment-derived melt-related metasomatized mantle wedge as a source of post-subduction Quaternary adakitic porphyries associated with absarokite-shoshonite from the Karadağ stratovolcano (Karaman, Central Anatolia, Turkey). J Asian Earth Sci 196:104380

    Article  Google Scholar 

  • Daneshvar N, Maanijou M, Azizi H, Asahara Y (2019) Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran. J Geodyn 132:101669

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sc Lett 129(1–4):85–102

    Article  Google Scholar 

  • DeCelles PG, Zandt G, Beck S, Currie CA, Ducea MN, Kapp P, Gehrels GE, Carrapa B, Quade J, Schoenbohm LM (2015) Cyclical orogenic processes in the Cenozoic Central Andes. In: DeCelles PG, Ducea MN, Carrapa B, Kapp PA (eds.) Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. In: Geological Society of America Memoir

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant MJ, Kepezhinskas P (2001) Evidence suggests slab melting in arc magmas. EOS (transactions, American Geophysical Union). 82:65–69

    Article  Google Scholar 

  • Defant MJ, Jackson TE, Drummond MS, DeBoer JZ, Bellon H, Feigenson MD, Maury RC, Stewart RH (1992) The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J Geol Soc London 149:569–579

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3(5):249–252

  • DePaolo DJ, Harrison TM, Wielicki M, Zhao Z, Zhu DC, Zhang H, Mo X (2019) Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet. Gondwana Res 73:123–135

    Article  Google Scholar 

  • Didon J, Germain YM (1976) Le Sabalan, Volcan Plio-Quaternaire de l Azerbaidjan oriental (Iran): Etude geologiqueet petrographique de le difice et de son environment regional (Ph.D. thesis) Docteur Du 3 Eme Cycle. Universit'e de Grenoble.

  • Dilek Y, Imamverdiyev NA, Altunkaynak S (2009) Geochemistry and tectonics of Cenozoic volcanism in the lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 143:536–578

    Google Scholar 

  • Ding L, Kapp P, Zhong DL, Deng WM (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865

    Article  Google Scholar 

  • Ducea MN, Barton MD (2007) Igniting flare-up events in Cordilleran arcs. Geology 35:1047–1050

    Article  Google Scholar 

  • Dulski P (2001) Reference materials for geochemical studies: new analytical data by ICP-MS and critical discussion of reference values. Geostandards Newsl 25:87–125

    Article  Google Scholar 

  • Ersoy EY (2013) PETROMODELER (Petrological Modeler): a Microsoft (R) Excel (R) spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turk J Earth Sci 22:115–125

  • Eyuboglu Y, Santosh M, Bektaş O, Chung SL (2011) Late Triassic subduction related ultramafic-mafic magmatism in the Amasya region (eastern Pontides, N Turkey): implications for the ophiolite conundrum in Eastern Mediterranean. J Asian Earth Sci 42:234–257

    Article  Google Scholar 

  • Faure G, Mensing TM (2005) In: Isotopes: principles and applications. third ed. John Wiley and Sons Inc., Hoboken, New Jersey, p 897

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Ghalamghash J, Mousavi Z, Hassanzadeh J, Schmitt AK (2016) Geology, Zircon geochronology and petrogenesis of Sabalan Volcano: northwest Iran. J Volcanol Geoth Res 327:192–207

    Article  Google Scholar 

  • Ghalamghash J, Schmitt AK, Chaharlang R (2019) Age and compositional evolution of Sahand volcano in the context of post-collisional magmatism in northwestern Iran: evidence for time-transgressive magmatism away from the collisional suture. Lithos 344–345:265–279

    Article  Google Scholar 

  • Ghalamghash J, Mousavi SZ, Khalatbari Jafari M (2022) Thermobarometry and petrogenesis of Sabalan volcanic rocks: based on mineral chemistry. In Persian. Res Earth Sci 13:26–43

    Google Scholar 

  • Gheitanchi MR (1996) Crustal structure in NW in Iran, revealed from the 1990 Rudbar after shock sequence. J Earth Space Phys 23:7–14

    Google Scholar 

  • Golestani M, Karimpour MH, Malekzadeh Shafaroudi A, Haidarian Shahri MR (2018) Geochemistry, U-Pb geochronology and Sr-Nd isotopes of the Neogene igneous rocks, at the Iju porphyry copper deposit, NW Shahr-e-Babak, Iran. Ore Geol Rev 93:290–307

    Article  Google Scholar 

  • Gualda G, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silicic-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Article  Google Scholar 

  • Gülyüz E, Durak H, Ozkaptan M, Krijgsman W (2020) Paleomagnetic constraints on the early Miocene closure of the southern Neo-Tethys (Van region; East Anatolia): inferences for the timing of Eurasia-Arabia collision. Glob Planet Change 185:103089. https://doi.org/10.1016/j.gloplacha.2019.103089

    Article  Google Scholar 

  • Guo F, Nakamuru E, Fan W, Kobayoshi K, Li C (2007) Generation of Paleocene adakitic andesites by magma mixing: Yanji area, NE China. J Petrol 48:661–692

    Article  Google Scholar 

  • Guo D, Nakamura E, Fan W, Kobayashi K, Li C, Gao X (2009) Mineralogical and geochemical constraints on magmatic evolution of Paleocene adakitic andesites from the Yanji area, NE China. Lithos 112:321–341

    Article  Google Scholar 

  • Hao LL, Wang Q, Wyman DA, Ou Q, Dan W, Jiang ZQ, Wu FY, Yang JH, Long XP, Li J (2016) Underplating of basaltic magmas and crustal growth in a continental arc: evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos 245:223–242

    Article  Google Scholar 

  • Hassanzadeh J, Stockli DF, Horton BK, Axen GJ, Stockli LD, Grove M, Schmitt AK, Walker JD (2008) U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451:71–96

    Article  Google Scholar 

  • Hatzfeld D, Molnar P (2010) Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implication. Rev Geophy 48:RG0005

    Article  Google Scholar 

  • Heidari S, Tabbakh Shabani AA, Hassanpour S, Maghdour Mashhour R (2022) Petrology of the Paleogene shoshonitic volcanism in north Sarab area, NW Iran: Geochemical, Ar-Ar dating and Sr-Nd-Pb isotopic constraints. J Asian Eerth Sci X8:100109. https://doi.org/10.1016/j.jaesx.2022.100109

    Article  Google Scholar 

  • Hunen JV, Allen MB (2011) Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet Sc Lett 302:27–37

    Article  Google Scholar 

  • Jahangiri A (2007) Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. J Asian Earth Sci 30:433–447

    Article  Google Scholar 

  • Jahn BM, Wu FY, Capdevila R, Wang YX, Zhao Z (1999) Highly evolved juvenile granites with tetrad REE patterns: The Wodule and Baerzhe granites from the Great Xing’an (Khingan) Mountain in NE China, In: Bardach G, Jahn BM (eds) IGCP420 2nd Workshop, Ulaanbaator, Abstract volume, Hors Serie 2, 42–6, Rennes: Geosciences Rennes

  • Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245

    Article  Google Scholar 

  • Jiang ZQ, Wang Q, Wyman DA, Li ZX, Yang JH, Shi XB, Tang GJ, Jia XH, Ma L, Gou GN, Guo HF (2014) Transition from oceanic to continental lithosphere subduction in southern Tibet: evidence from the Late Cretaceous-Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos 196–197:213–231

    Article  Google Scholar 

  • Kaislaniemi L, van Hunen J, Allen MB, Neill I (2014) Sublithospheric small-scale convection—a mechanism for collision zone magmatism. Geology 42:291–294

    Article  Google Scholar 

  • Kapp P, Yin A, Harrison TM, Ding L (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Ame Bull 117:865–878

    Article  Google Scholar 

  • Karsli O, Dokuz A, Uysal I, Aydin F, Kandemir R, Wijbrans RJ (2010) Generation of the early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114:109–120

    Article  Google Scholar 

  • Karsli O, Dokuz A, Kandemir R, Aydin F, Schmitt AK, Ersoy Y, Alyildiz C (2019) Adakite-like parental melt generation by partial fusion of juvenile lower crust, Sakarya Zone, NE Turkey: a far-field response to break-off of the southern Neotethyan oceanic lithosphere. Lithos 338:58–72

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geoth Res 4:117–132

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kaygusuz A, Aslan Z, Aydınçakır E, Yücel C, Gücer MA, Şen C (2018) Geochemical and Sr-Nd-Pb isotope characteristics of the Miocene to Pliocene volcanic rocks from the Kandilli (Erzurum) area, Eastern Anatolia (Turkey): Implications for magma evolution in extension-related origin. Lithos 296–299:332–351

    Article  Google Scholar 

  • Keskin M (2003) Magma generation by slab steepening and break off beneath a subduction accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophys Res Lett 30:1–4

  • Kheirkhah M, Allen MB, Emami M (2009) Quaternary syn-collision magmatism from the Iran/Turkey borderlands. J Volcanol Geoth Res 182:1–12

    Article  Google Scholar 

  • Kheirkhah M, Neill I, Allen MB, Ajdari K (2013) Small-volume melts of lithospheric mantle during continental collision: late Cenozoic lavas of Mahabad, NW Iran. J Asian Earth Sci 74:37–49

    Article  Google Scholar 

  • Kheirkhah M, Neill I, Allen MB, Emami MH, Ghadimi AS (2020) Distinct sources for high-K and adakitic magmatism in SE Iran. J Asian Earth Sci 196:104355

    Article  Google Scholar 

  • Koshnaw RI, Stockli DF, Schlunegger F (2018) Timing of the Arabia-Eurasia continental collision—evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology 47:47–50

    Article  Google Scholar 

  • Lebedev VA, Vashakidze GT, Parfenov AV, Yakushev AI (2019) The origin of adakite- like magmas in the modern continental collision zone: evidence from Pliocene dacitic volcanism of the Akhalkalaki Lava Plateau (Javakheti Highland, Lesser Caucasus). Petrology 27:307–327

    Article  Google Scholar 

  • Lechmann A, Burg JP, Ulmer P, Guillong M, Faridi M (2018) Metasomatized mantle as the source of mid-Miocene-quaternary volcanism in NW-Iranian Azerbaijan: geochronological and geochemical evidence. Lithos 304–307:311–328

    Article  Google Scholar 

  • Lei J, Zhao D (2007) Teleseismic evidence for a break-off subducting slab under Eastern Turkey. Earth Planet Sci Lett 257(1–2):14–28

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petr 98:129–138

    Article  Google Scholar 

  • Lin YC, Chung SL, Bingöl AF, Yang L, Okrostsvaridze A, Pang KN, Lee HY, Lin TH (2020) Diachronous initiation of post-collisional magmatism in the Arabia-Eurasia collision zone. Litjos 356–357:105394

    Google Scholar 

  • Liu D, Zhao Z, Depaolo DJ, Zhu D, Meng F, Shi Q, Wang Q (2017) Potassic volcanic rocks and adakitic intrusions in southern Tibet: insights into mantle-crust interaction and mass transfer from Indian plate. Lithos 268–271:48–64

    Article  Google Scholar 

  • Ma L, Wang BD, Jiang ZQ, Wang Q, Li ZX, Wyman DA, Zhao SR, Yang JH, Gou GN, Guo HF (2014) Petrogenesis of the Early Eocene adakitic rocks in the Nagpuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos 196–197:321–338

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sc Lett 243:581–593

    Article  Google Scholar 

  • Maggi A, Priestley K (2005) Surface waveform tomography of the Turkish-Iranian plateau. Geophys J Int 160:1068–1080

    Article  Google Scholar 

  • Mahmoudi Nia H, Baghban S, Simmonds V (2017) Geology, geochemistry and petrogenesis of post-collisional adakitic intrusions and related dikes in the Khoynarood area, NW Iran. Geochemistry 77:53–67

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37:215–224

    Article  Google Scholar 

  • Moghadam H, Corfu F, Chiaradia M, Stern RJ, Ghorbani G (2014a) Sabzevar Ophiolite, NE Iran: progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos 210–211:224–241

    Article  Google Scholar 

  • Moghadam HS, Ghorbani G, ZakiKhedr M, Fazlnia N, Chiaradia M, Eyuboglu Y, Santosh M, Galindo Francisco C, Lopez Martinez M, Gourgaud A, Arai S (2014b) Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: implications for geodynamic evolution of the Turkish-Iranian High Plateau. Gondwana Res 26:1028–1050

    Article  Google Scholar 

  • Mouthereau F (2011) Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia/Eurasia convergence. Geol Mag 148:726–738

    Article  Google Scholar 

  • Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535:27–60

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature.” Lithos 112:556–574

    Article  Google Scholar 

  • Na C, Nakano T, Tazawa K, Sakagawa M, Ito T (1995) A systematic and practical method of liquid chromatography for the determination of Sr and Nd isotopic ratios and REE concentrations in geological samples. Chem Geol 123:225–237

    Article  Google Scholar 

  • Nabatian G, Jiang SY, Honarmand M, Neubauer F (2016) Zircon U-Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos 244:43–58. https://doi.org/10.1016/j.lithos.2015.11.020

    Article  Google Scholar 

  • Neill I, Meliksetian K, Allen MB, Navarsardyan G, Karapetyan S (2013) Pliocene-Quaternary volcanic rocks of NW Armenia: magmatism and lithospheric dynamics within an active orogenic plateau. Lithos 180–181:200–215

    Article  Google Scholar 

  • Neill I, Meliksetian K, Allen MB, Navarsardyan G, Kuiper K (2015) Petrogenesis of mafic collision zone magmatism: the Armenian sector of the Turkish-Iranian Plateau. Chem Geol 403:24–41

    Article  Google Scholar 

  • Nouri F, Azizi H, Asahara Y, Whattam S, Tsuboi M, Mohammad YO, Minami M, Anma R (2021) Coexistence of two types of Late Paleocene adakitic granitoid, Soursat complex, NW Iran. Lithos 404–405:106438. https://doi.org/10.1016/j.lithos.2021.106438

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M (2008) Arc-magmatism and subduction history beneath the Zagros mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Ou Q, Wang Q, Wyman DA, Zhang HX, Yang J, Zeng JP, Hao LL, Chen YW, Liang H, Qi Y (2017) Eocene adakitic porphyries in the central-northern Qiangtang Block, central Tibet: partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. J Geophys Res Sol Ea 122:1025–1053

    Article  Google Scholar 

  • Pakina M, Ballato P, Heidarzadeh G, Cifelli F, Oskooi B, Feinberg J, Jackson M, Bilardello D, Salvini F, Mirzaie Ataabadi M, Tadayon M, Ghassemi MR, Mattei M (2021) Middle-late Miocene normal faulting in the intermontane Tarom basin during the collisional deformation of the Arabia-Eurasia collision zone, NW Iran: a regional process or a local feature? J Asian Earth Sci 217:104846

    Article  Google Scholar 

  • Pang KN, Chung SL, Zarrinkoub MH, Li XH, Lee HY, Lin TH, Chiu HY (2016) New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia-Eurasia collision zone. Lithos 264:348–359

    Article  Google Scholar 

  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geoth Res 44:189–229

    Article  Google Scholar 

  • Pirouz M, Avouac JP, Hassanzadeh J, Kirschvink JL, Bahroudi A (2017) Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth Planet Sc Lett 477:168–182

    Article  Google Scholar 

  • Rabiee A, Rossetti F, Asahara Y, Azizi H, Lucci F, Lustrino M, Nozaem R (2020) Long-lived, Eocene-Miocene stationary magmatism in NW Iran along a transform plate boundary. Gondwana Res 85:237–262. https://doi.org/10.1016/j.gr.2020.03.014

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral and Petr 160:45–66

    Article  Google Scholar 

  • Scott EM, Allen MB, Macpherson CG, McCaffrey KJW, Davidson JP, Saville C, Ducea MN (2018) Andean surface uplift constrained by radiogenic isotopes of arc lavas. Nat Commun 9:1–8

    Article  Google Scholar 

  • Seghedi I, Maţenco L, Downes H, Mason PRD, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region. Tectonophysics 502:146–157

    Article  Google Scholar 

  • Shahbazi H, Shafaii Moghadam H (2014) Geochemistry and petrogenesis of the Sabalan Plio-Quaternary volcanic rocks: implication for post-collisional magmatism. J Crystallogr Mineral 22:57–68

    Google Scholar 

  • Shahbazi H, Taheri Maghami Y, Azizi H, Asahara Y, Siebel W, Maanijou M, Rezai A (2021) Zircon U-Pb ages and petrogenesis of late Miocene adakitic rocks from the Sari Gunay gold deposit, NW Iran. Geol Mag 158:1733–1755

    Article  Google Scholar 

  • Shahzeidi M, Moayyed M, Murata M, Yui TF, Arai S, Chen F, Pirnia T, Ahmadian J (2016) Late Ediacaran crustal thickening in Iran: geochemical and isotopic constraints from the ~550 Ma Mishu granitoids (northwest Iran). Int Geol Rev 59:793–811

    Article  Google Scholar 

  • Sheldrick TC, Barry TL, Dash B, Gan C, Millar IL, Barfod DN, Halton AM (2020) Simultaneous and extensive removal of the East Asian lithospheric root. Sci Rep 10:4128. https://doi.org/10.1038/s41598-020-60925-3

    Article  Google Scholar 

  • Skolbeltsyn G, Mellors R, Gök R, Türkelli N, Yetirmishli G, Sandvol E (2014) Upper mantle S wave velocity structure of the East Anatolian-Caucasus region. Tectonics 33:207–221

    Article  Google Scholar 

  • Sosson M, Rolland Y, Müller C, Danelian T, Melkonyan R, Kekelia S, Adamia A, Babazadeh V, Kangarli T, Avagyan A, Galoyan G, Mosar J (2010) Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. In: Sosson M, Kaymakci N, Stephenson RA, Bergerat F, Starostenko V (eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geol Soc Lond Spec Publ 340: 329–352.

  • Streck MJ, Leeman WP, Chesley JT (2007) High magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Taghizadeh-Farahmand F, Sodoudi F, Afsari N, Ghassemi MR (2010) Lithospheric structure of NW Iran from P and S receiver functions. J Seismol 14:823–836

    Article  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Article  Google Scholar 

  • Torkian A, Furman T, Salehi N, Veloski K (2019) Petrogenesis of adakites from the Sheyda volcano, NW Iran. J Afr Earth Sci 150:194–204

    Article  Google Scholar 

  • Vincent SJ, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA, Simmons MD (2005) Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol Soc Am Bull 117:1513–1533

    Article  Google Scholar 

  • Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology 33:464–468

    Article  Google Scholar 

  • Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL, Ma JL (2006) Petrogenesis of adakitic porphyries in an extentional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. J Petrol 47:119–144

    Article  Google Scholar 

  • Wang Q, Wyman DA, Zhao ZH, Xu JF, Bai ZH, Xiong XL, Dai TM, Li CF, Chu ZY (2007) Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chem Geol 236:42–64

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu J, Dong Y, Vasconcelos PM, Pearson N, Wan Y, Dong H, Li C, Yu Y, Zhu T, Feng X, Zhang Q, Zi F, Chu Z (2008) Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sc Lett 272:158–171

    Article  Google Scholar 

  • Whalen JB, Hildebrand RS (2019) Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 348–349:105179. https://doi.org/10.1016/j.lithos.2019.105179

    Article  Google Scholar 

  • Zhang Z, Xiao W, Majidifard MR, Zhu R, Wan B, Ao S, Chen L, Rezaeian M, Esmaeili R (2017) Detrital zircon provenance analysis in the Zagros Orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys. Int J Earth Sci 106:1223–1238

    Article  Google Scholar 

  • Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Steeling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J Petrol 51:2411–2444

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon research funded by “Iran National Science Foundation (INSF) under project No. 4000689”. M.N.D. also acknowledges support from the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding project PN-III-P4-ID-PCCF-2016-0014. We thank Mahdi Haji Norouzi for studying of opaque minerals. The Manuscript benefited from constructive reviews by Kwan-Nang Pang and J. Gregory Shellnutt as well as Topic Editor J.-F. Moyen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Ghalamghash.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 55 KB)

Supplementary file2 (XLSX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaharlang, R., Ghalamghash, J., Saitoh, Y. et al. Sr–Nd isotopes of Sabalan Volcano, NW Iran: insights into the origin of collisional adakites and geodynamic implications. Int J Earth Sci (Geol Rundsch) 112, 2065–2080 (2023). https://doi.org/10.1007/s00531-023-02338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02338-x

Keywords

Navigation