Skip to main content
Log in

An event-duration based rainfall threshold model for landslide prediction in Uttarkashi region, North-West Himalayas, India

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The present study is aimed to develop an early warning system for temporal landslide prediction by analysing rainfall and landslide occurrence data of almost a decade along a 50 km road stretch in Uttarkashi district of the Uttarakhand State, India. In the study, an empirical cumulated rainfall event-rainfall duration (ED) model is used to determine the rainfall threshold for landslide occurrences for different exceedance probabilities. The model was validated using the data of the year 2014 and a contingency matrix involving different validation parameters and Receiver Operating Characteristic curve. Additionally, the study analysed the effect of different periods of antecedent rainfall on landslide occurrence by studying the number of landslides triggered by daily rainfall on the landslide event day and antecedent rainfall of different periods before the occurrence of any landslide event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during this study are available from the corresponding author on request.

References

  • Abraham MT, Satyam N, Pradhan B (2020) Forecasting of landslides using rainfall severity and soil wetness: a probabilistic approach for Darjeeling Himalayas. Water 123:804

    Article  Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265. https://doi.org/10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Althuwaynee OF, Asikoglu O, Eris E (2018) Threshold contour production of rainfall intensity that induces landslides in susceptible regions of northern Turkey. Landslides 15(8):1541–1560. https://doi.org/10.1007/s10346-018-0968-2

    Article  Google Scholar 

  • Annunziati A, Focardi A, Focardi P, Martello S, Vannocci P (2000) Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps-Tuscany, Italy (19 June 1996 storm). In Proc. EGS Plinius Conf. on Mediterranean Storms, Maratea, Italy

    Google Scholar 

  • Bacchini M, Zannoni A (2003) Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy). Nat Hazards Earth Syst Sci 3(1/2):71–79. https://doi.org/10.5194/nhess-3-71-2003

    Article  Google Scholar 

  • Basistha A, Arya DS, Goel NK (2008) Spatial distribution of rainfall in Indian Himalayas–a case study of Uttarakhand region. Water Resour Manag 22(10):1325–1346. https://doi.org/10.1007/s11269-007-9228-2

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10(3):447–458. https://doi.org/10.1007/s11269-007-9228-2

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann Series A Phys Geogr. 62(1):23–27. https://doi.org/10.1080/04353676.1980.11879996

    Article  Google Scholar 

  • Calcaterra D, Parise M, Palma B, Pelella L (2000) The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In: Landslides in Research, Theory and Practice: Proceedings of the 8th International Symposium on Landslides held in Cardiff on 26–30 June 2000, pp 1–209. Thomas Telford Publishing.

  • Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. US Government Printing Office. 851 Doi: https://doi.org/10.3133/PP851

  • Cancelli A (1985) Landslides in soil debris cover triggered by rainstorms in Valtellina (Central Alps-Italy). In Proc. IV international conference and field workshop on landslides, Tokyo, August 1985 267–272

  • Cannon SH (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region. California California Geology 38(12):267–272

    Google Scholar 

  • Cannon SH, Gartner JE (2005) Wildfire-related debris flow from a hazards perspective. Debris-flow hazards and related phenomena. Springer, Berlin, Heidelberg, pp 363–385

    Chapter  Google Scholar 

  • Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laber JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96(3–4):250–269. https://doi.org/10.1016/j.geomorph.2007.03.019

    Article  Google Scholar 

  • Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bullet Int Assoc Eng Geol-Bulletin De L’association Internationale De Géologie De L’ingénieur 32(1):49–54. https://doi.org/10.1007/BF02594765

    Article  Google Scholar 

  • Ceriani M (1992) Rainfall and landslides in the Alpine area of Lombardia Region, central Alps, Italy. In: Proceedings, Interpraevent Int. Symp, Bern, 2: 9–20

  • Chen CW, Saito H, Oguchi T (2015) Rainfall intensity–duration conditions for mass movements in Taiwan. Prog Earth Planet Sci 2(1):1–13. https://doi.org/10.1186/s40645-015-0049-2

    Article  Google Scholar 

  • Chien-Yuan C, Tien-Chien C, Fan-Chieh Y, Wen-Hui Y, Chun-Chieh T (2005) Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol 47(5):715–724. https://doi.org/10.1007/s00254-004-1203-0

    Article  Google Scholar 

  • Chleborad AF (2003) Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington. Area US Geol Survey Open-File Report 3(463):39

    Google Scholar 

  • Clarizia M, Gullà G, Sorbino G (1996) Sui meccanismi di innesco dei soil slip. In: International conference Prevention of hydrogeological hazards: the role of scientific research, 1: 585–597.

  • Crosta G (1998) Rainfall threshold regionalization: an aid for landslide susceptibility zonation. Environ Geol 35(2/3):131–145

    Article  Google Scholar 

  • Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Proc. of the 2nd EGS Plinius Conference on Mediterranean Storms: Publication CNR GNDCI, 2547: 463–487

  • Crozier MJ (1999) Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surf Proce Landf J Brit Geomorpho Res Group 24(9):825–833

    Article  Google Scholar 

  • Cullen CA, Suhili RAL, Aristizabal E (2022) A landslide numerical factor derived from chirps for shallow rainfall triggered landslides in Colombia. Remote Sens 14(9):2239

    Article  Google Scholar 

  • Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100(3–4):429–443. https://doi.org/10.1016/j.geomorph.2008.01.014

    Article  Google Scholar 

  • Dikshit A, Satyam DN (2018) Estimation of rainfall thresholds for landslide occurrences in Kalimpong. India Innov Infrastruct Solut 3(1):1–10. https://doi.org/10.1007/s41062-018-0132-9

    Article  Google Scholar 

  • Dikshit A, Satyam N, Pradhan B (2019) Estimation of rainfall-induced landslides using the TRIGRS model. Earth Sys and Environ 3(3):575–584. https://doi.org/10.1007/s41748-019-00125-w

    Article  Google Scholar 

  • Endo T (1970) Probable distribution of the amount of rainfall causing landslides. Annual report, Hokkaido Branch, Govern. Forest Experiment Station, Sapporo, 123–136

  • Floris M, Mari M, Romeo RW, Gori U (2004) Modelling of landslide-triggering factors-A case study in the northern Apennines, Italy. In: Floris M (ed) Engineering geology for infrastructure planning in Europe. Springer, Berlin, Heidelberg, pp 745–753

    Chapter  Google Scholar 

  • Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojha T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63(3–4):131–143. https://doi.org/10.1016/j.geomorph.2004.03.011

    Article  Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019‘

    Article  Google Scholar 

  • Gariano SL, Sarkar R, Dikshit A, Dorji K, Brunetti MT, Peruccacci S, Melillo M (2019) Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag. Bhutan. Bull. Eng. Geol. 78:4325–4332. https://doi.org/10.1007/s10064-018-1415-2

    Article  Google Scholar 

  • Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical Antecedent Daily Rainfall Model. Pure Appl Geophys 157(6):1059–1079. https://doi.org/10.1007/s000240050017

    Article  Google Scholar 

  • Govi M, Sorzana PF (1980) Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud Geomorphol Carpatho- Balc 14:43–60

    Google Scholar 

  • Govi M, Mortara G, Sorzana PF (1985) Eventi idrologici e frane. Geologia Applicata e Idrogeologia 20:359–375

    Google Scholar 

  • Gupta V, Bist KS (2004) The 23 September 2003 Varunavat Parvat landslide in Uttaranchal township. Uttaranchal Curr Sci 87(11):1600–1605

    Google Scholar 

  • Gupta V, Chauhan N, Penna I, Hermanns R, Dehls J, Sengupta A, Bhasin RK (2022) Geomorphic evaluation of landslides along the Teesta river valley, Sikkim Himalaya. India Geol J 57(2):611–621

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmospheric Phys 98(3):239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Harilal GT, Madhu D, Ramesh MV, Pullarkatt D (2019) Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim. India Landslides 16(12):2395–2408. https://doi.org/10.1007/s10346-019-01244-1

    Article  Google Scholar 

  • Hermanns Reginald L et al (2012) (2012) Landslides in the Andes and the need to communicate on an interandean level on landslide mapping and research. Rev De La Asoc Geol Argent 69(3):321–327

    Google Scholar 

  • Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Hernandez W (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador: practical mitigation. In: Proceedings of international conference on fast slope movements—prediction and prevention for risk mitigation, IC-FSM2003. Patron Pub, Naples, 275–282

  • Hong Y, Hiura H, Shino K, Sassa K, Suemine A, Fukuoka H, Wang G (2005) The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island. Japan Landslides 2(2):97–105. https://doi.org/10.1007/s10346-004-0043-z

    Article  Google Scholar 

  • IS 1893: 2016 (Part I) Criteria for Earthquake Resistant Design of Structures—Part 1: General Provisions and Buildings. Published by Bureau of Indian Standards Bahadur Shah Zafar Marg, New Delhi

  • Islam MA (2014) Chattoraj SL and Ray PK (2014) Ukhimath landslide 2012 at Uttarakhand, India: Causes and consequences. Int J Geomat Geosci 4(3):544–557

    Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the north shore mountains of Vancouver. British Columb Geomorphol 54(3–4):137–156. https://doi.org/10.1016/S0169-555X(02)00339-2

    Article  Google Scholar 

  • Jibson RW (1989) Debris flows in southern Puerto Rico. Landslide processes of the eastern United States and Puerto Rico. Geol Soc Am Special Paper 236:29–55

    Article  Google Scholar 

  • Kang HS, Kim YT (2016) A study on warning level-based-landslide triggering rainfall criteria considering weathered soil type and landslide type. J Korean Soc Hazard Mitig 16(2):341–350. https://doi.org/10.9798/KOSHAM.2016.16.2.341

    Article  Google Scholar 

  • Kanji MA, Massad F, Cruz PT (2003) Debris flows in areas of residual soils: occurrence and characteristics. In International Workshop on Occurrence and Mechanism of Flows in Natural Slopes and Earthfills, 2: 1–11

  • Kanungo DP, Sharma S (2014) Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas. India Landslides 11(4):629–638. https://doi.org/10.1007/s10346-013-0438-9

    Article  Google Scholar 

  • Khan YA, Lateh H, Baten MA, Kamil AA (2012) Critical antecedent rainfall conditions for shallow landslides in Chittagong City of Bangladesh. Environ Earth Sci 67(1):97–106. https://doi.org/10.1007/s12665-011-1483-0

    Article  Google Scholar 

  • Kim SK (1991) Prediction of rainfall triggered landslides in Korea. Landslides 2:989–994

    Google Scholar 

  • Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region. Uttarakhand J Geol Soc India 87:271–286

    Article  Google Scholar 

  • Lagomarsino D, Segoni S, Rosi A, Rossi G, Battistini A, Catani F, Casagli N (2015) Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat Hazards Earth Syst Sci 15(10):2413–2423. https://doi.org/10.5194/nhess-15-2413-2015

    Article  Google Scholar 

  • Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment. Puerto Rico Geografiska Annaler Series a, Physical Geography 75(1/2):13–23. https://doi.org/10.1080/04353676.1993.11880379

    Article  Google Scholar 

  • Lee WY, Park SK, Sung HH (2021) The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon. Rep Korea Landslid 18(5):1721–1739. https://doi.org/10.1007/s10346-020-01603-3

    Article  Google Scholar 

  • Leonarduzzi E, Molnar P, McArdell BW (2017) Predictive performance of rainfall thresholds for shallow landslides in Switzerland from gridded daily data. Water Resour Res 53(8):6612–6625. https://doi.org/10.1002/2017WR021044

    Article  Google Scholar 

  • Ma T, Li C, Lu Z, Bao Q (2015) Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China. Geomorphology 245:193–206. https://doi.org/10.1016/j.geomorph.2015.05.016

    Article  Google Scholar 

  • Mandal P, Sarkar S (2021) Estimation of rainfall threshold for the early warning of shallow landslides along national highway-10 in Darjeeling Himalayas. Nat Hazards 105(3):2455–2480. https://doi.org/10.1007/s11069-020-04407-9

    Article  Google Scholar 

  • Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1–2):1–17. https://doi.org/10.1016/S0169-555X(01)00162-3

    Article  Google Scholar 

  • Martha TR, Roy P, Govindharaj KB, Kumar KV, Diwakar PG, Dadhwal VK (2015) Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state. India Landslides 12(1):135–146. https://doi.org/10.1007/s10346-014-0540-7

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12(2):311–320. https://doi.org/10.1007/s10346-014-0471-3v

    Article  Google Scholar 

  • Mirus BB, Becker RE, Baum RL, Smith JB (2018) Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning. Landslides 15(10):1909–1919. https://doi.org/10.1007/s10346-018-0995-z

    Article  Google Scholar 

  • Montgomery DR, Schmidt KM, Greenberg HM, Dietrich WE (2000) Forest clearing and regional landsliding. Geol 28(4):311–314. https://doi.org/10.1130/0091-7613(2000)28%3C311:FCARL%3E2.0.CO;2

    Article  Google Scholar 

  • Naithani Ajay K, Deepak K, Prasad C (2002) The catastrophic landslide of 16 July 2001 in Phata Byung area, Rudraprayag District, Garhwal Himalaya. India. Curr. Sci. 82(2002):921–923

    Google Scholar 

  • Nilsen TH, Turner BL (1975) Influence of rainfall and ancient landslide deposits on recent landslides (1950–71) in urban areas of Contra Costa County, California. US Government Printing Office. 1388

  • Pandey VK, Mishra A (2015) Causes and disaster risk reduction measures for hydrometerological disaster in Uttarakhand, India: an overview. IJCRST 1(3):61–80

    Google Scholar 

  • Park JY, Lee SR, Lee DH, Kim YT, Oh S, Park HJ (2018) Development of continuous rainfall-based citywide landslide early warning model. J Korean Soc Hazard Mitig 18(1):99–111. https://doi.org/10.9798/KOSHAM.2018.18.1.99

    Article  Google Scholar 

  • Pasuto A, Silvano S (1998) Rainfall as a trigger of shallow mass movements A case study in the Dolomites. Italy Environ Geol. 35(2):184–189. https://doi.org/10.1007/S002540050304

    Article  Google Scholar 

  • Paul SK, Bartarya SK, Rautela P, Mahajan AK (2000) Catastrophic mass movement of 1998 monsoons at Malpa in Kali Valley, kumaun Himalaya (India). Geomorphology 35(3):169–180. https://doi.org/10.1016/S0169-555X(00)00032-5

    Article  Google Scholar 

  • Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139:79–90. https://doi.org/10.1016/j.geomorph.2011.10.005

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geol 40(10):927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia M (2017) Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol 128:255–273

    Article  Google Scholar 

  • Purohit KK, Islam R, Thakur VC (1990) Metamorphism of Psammo-Pelitic rock, Bhagirathi Valley. Garhwal Himalaya J Himal Geol 1(2):167–174

    Google Scholar 

  • Reichenbach P, Cardinali M, De Vita P, Guzzetti F (1998) Regional hydrological thresholds for landslides and floods in the tiber river basin (central Italy). Environ Geol 35(2):146–159. https://doi.org/10.1007/s002540050301

    Article  Google Scholar 

  • Rosi A, Peternel T, Jemec-Auflič M, Komac M, Segoni S, Casagli N (2016) Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 13(6):1571–1577. https://doi.org/10.1007/s10346-016-0733-3

    Article  Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley. Himalayas Int J Remote Sens 23(2):357–369

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan. Geomorphology 118(1–2):167–175. https://doi.org/10.1016/j.geomorph.2009.12.016

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2010) Landslide disaster on Berinag Munsiyari road, Pithoragarh district. Uttarakhand Curr Sci 98(7):900–902

    Google Scholar 

  • Sarkar S, Kanungo DP, Chauhan PKS (2004) NEWS FOCUS: Landslide disaster of 24 September 2003 in Uttarkashi. Curr Sci 87(2):134–137

    Google Scholar 

  • Sarkar S, Kanungo DP, Sharma S (2015) Landslide hazard assessment in the upper Alaknanda valley of Indian Himalayas Geomatics. Nat Hazards Risk. 6(4):308–325. https://doi.org/10.1080/19475705.2013.847501

    Article  Google Scholar 

  • Sarkar S, Pandit K, Sharma M, Pippal A (2018) Risk assessment and stability analysis of a recent landslide at Vishnuprayag on the Rishikesh-Badrinath highway. Curr. Sci, Uttarakhand, India. https://doi.org/10.18520/cs/v114/i07/1527-1533

    Book  Google Scholar 

  • Sarkar S, Pandit K, Dahiya N, Chandna P (2021) Quantified landslide hazard assessment based on finite element slope stability analysis for Uttarkashi-Gangnani Highway in Indian Himalayas. Nat Hazards 106(3):1895–1914. https://doi.org/10.1007/s11069-021-04518-x

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15(8):1483–1501

    Article  Google Scholar 

  • Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim. India Nat Hazards 52(1):31–42. https://doi.org/10.1007/s11069-009-9352-9

    Article  Google Scholar 

  • Shugar DH, Jacquemart M, Shean D et al (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373:300–306. https://doi.org/10.1126/science.abh4455

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation. Chapman and Hall, London

    Google Scholar 

  • Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2013) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10(5):547–562. https://doi.org/10.1007/s10346-012-0341-9

    Article  Google Scholar 

  • Terlien MT (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2):124–130. https://doi.org/10.1007/s002540050299

    Article  Google Scholar 

  • Vaz T, Zêzere JL, Pereira S, Oliveira SC, Garcia RA, Quaresma I (2018) Regional rainfall thresholds for landslide occurrence using a centenary database. Nat Hazards Earth Syst Sci 18(4):1037–1054. https://doi.org/10.5194/nhess-18-1037-2018

    Article  Google Scholar 

  • Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14(2):317–330. https://doi.org/10.5194/nhess-14-317-2014

    Article  Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. In: Costa JE, Wieczorek GF (eds) Debris flows/ avalanches: process, recognition and mitigation. Reviews in engineering geology, Geol Soc Am Boulder. Cham

    Google Scholar 

  • Wieczorek GF (1996) Landslide triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, Special Report. Washington DC

    Google Scholar 

  • Wieczorek GF, Morgan BA, Campbell RH (2000) Debris-flow hazards in the Blue Ridge of central Virginia. Environ Eng Geosci 6(1):3–23. https://doi.org/10.2113/gseegeosci.6.1.3

    Article  Google Scholar 

  • Zezere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5(3):331–344. https://doi.org/10.5194/nhess-5-331-2005

    Article  Google Scholar 

  • Zhao B, Dai Q, Han D, Dai H, Mao J, Zhuo L (2019) Probabilistic thresholds for landslides warning by integrating soil moisture conditions with rainfall thresholds. J Hydrol 574:276–287. https://doi.org/10.1016/j.jhydrol.2019.04.062

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-Central Building Research Institute, Roorkee for his kind permission to publish the research work. Reviewers, Prof. Reginald Hermanns and Prof. Bodo Bookhagen, and the Editor-in-Chief, Prof. Ulrich Riller are duly acknowledged for their constructive and invaluable suggestions which helped immensely to improve the manuscript. The authors are also highly thankful to Dr Mauro Rossi, Abhirup Dikshit, Prodip Mandal and Dr Shraban Sarkar for their valuable suggestions. The Border Roads Organisation (BRO) is also acknowledged for the support during field investigation.

Funding

The authors declare that no funds were received for the research work carried out in the present study.

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualised the research objective and interpreted the results along with drafting the manuscript; PC analysed the data, interpreted the results and prepared the figures; KP interpreted the results and edited the manuscript; ND collected the field data.

Corresponding author

Correspondence to Shantanu Sarkar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2660 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Chandna, P., Pandit, K. et al. An event-duration based rainfall threshold model for landslide prediction in Uttarkashi region, North-West Himalayas, India. Int J Earth Sci (Geol Rundsch) 112, 1923–1939 (2023). https://doi.org/10.1007/s00531-023-02337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02337-y

Keywords

Navigation