Skip to main content

Advertisement

Log in

Modeling metamorphosis of the Old Brahmaputra River and associated impacts on landscapes in the Central Bengal Basin, Bangladesh

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study explores causal mechanisms of river metamorphosis and its impacts on regional landscapes. The study also investigates the implications of metamorphosis on associated ecological resources. Advanced GIS and remote sensing technologies were used to delineate morphological parameters describing metamorphosis of the Old Brahmaputra River from historical maps (i.e., Rannell's Map in 1776, Tassin's Map in 1840, Topographic Survey Map in 1943) and remotely sensed optical satellite imagery Sentinel-2 in 2022. Flood frequencies were investigated for different periods by applying Gumbel’s Analytical Method (GAM), Log-Pearson Type III, and Log-Normal Method to estimate probability of flood vulnerability and impacts of flooding on morphodynamics in the central Bengal Basin. During the periods between 1776 and 2022, the area of sedimentation (77,999.43 ha) was greater than the eroded area (2983.29 ha).This difference was attributed to siltation of the channel bed morphology and corresponding accelerated flood vulnerability that accompanied river metamorphosis. Hydrological variables particularly annual average discharge significantly declined from 22 to ~ 18 m3/s per year during the period from 1965 to 2020. The study results demonstrated that the log-normal methods significantly overestimated peak flood discharge compared to Log-Pearson methods and Gumbel’s probability model. The extrapolation of the discharge for the 100-year flood by applying the three methods produced values of 712.66 m3/s, 1750.26 m3/s, and 2462.92 m3/s. Differences of these magnitudes may be critical for planning purposes because these differences in results will generate large-scale projected impacts on morphodynamics of the central Bengal Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Funding

No funding support was applied to complete this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nazrul Islam.

Ethics declarations

Conflict of interest

All authors of this manuscript declare that there are no conflicts of interest. The authors also confirm that they have invested similar efforts in preparing this manuscript.

Appendices

Appendix 1. Details linear-log Regression Method

The results are routinely expressed using a graphical presentation where the log-normal values of the recurrence interval (T) define the independent variable and corresponding maximum flood peak discharges are the dependent variable (Eq. 4). In general, the method is applied by considering a numeric constant value a, which is derived from Eq. (5) and is the ratio of the total of the discrepancy between the 2nd and 1st highest peak flood discharge, the 3rd and 2nd highest flood discharge, and continuing through the flood data series, divided by the natural log of the second highest exceedance probability values separated from the preceding first value, and so on, for all the data values (Ramasamy et al. 2022).

$$Q_{p} = a*\ln \left[ T \right] + b.,$$
(3)

where \(Q_{p}\) is displayed as the peak flood discharge; ln is the natural logarithm function, and whereas a and b are constants.

$$T = \frac{n + 1}{m},$$
(4)

where T is defined as the recurrence interval of flood peak discharge usually in years; N defines the number of years of flood peak data series; m is the rank of maximum peak flood discharge of the flood data series, whereas, rank 1 demonstrated the highest flood peak discharge for the study period, and subsequently the rankings follow in a descending order.

$$a = \frac{{\mathop \sum \nolimits_{i = 0}^{n} \left( {Q_{pi + 1} - Q_{pi} } \right)}}{{\mathop \sum \nolimits_{i = 0}^{n} \left( {\ln T_{i + 1 - } \ln T_{i} } \right)}} ,$$
(5)

where, a defines a slope coefficient, which is generally expressed as the change in the ratio of the flood peak discharge (\(Q_{p}\)) and relative change of recurrence interval (T).

$$R^{2} = 1 - \left[ {\frac{{\sum \left( {Q_{pi} - a\ln T_{i} + b} \right)}}{{\sum \left( {Q_{pi} - \overline{Q}_{p} } \right)^{2} }}} \right],$$
(6)

where \(R^{2}\) is the coefficient of determination, and n = (1, 2, 3…….0.53) and i = (1, 2, 3, 4 …… 53).

Appendix 2. Details of Gumbel’s Analytical Method (GAM)

According to Gumbel's model of extreme value calculation, the probability that an occurrence will happen that is equal to or greater than a value (\({Q}_{p0}\)) is determined by Eq. (7). Based on the recorded annual daily discharge values of the river, the maximum discharge value of 53 years was used to determine the mean flood peak \(({\overline{Q} }_{p})\) by summing each year’s flood peak and dividing by total the number of events/year (N = 53) (Eq. 14). The standard deviation (\({\sigma }_{n-1}\)) of the flood peak of 53 years was computed using Eq. 15. The frequency factors (K) were calculated as the difference between the reduced variate (\({y}_{T })\) and reduced mean (\({y}_{n)}\) divided by the reduced standard deviation (\({S}_{n}\)) for future time dimension (Eq. 16) (see Appendix 7). The required flood magnitude (\({Q}_{pT}\)) by mean discharge \(\left({\overline{Q} }_{p}\right)\) and the multiplication results of frequency factor (K) and standard deviation (\({\sigma }_{n-1}\)) were determined for various return periods Eq. (12).

$$p\left( {Q_{p} \ge Q_{p0} } \right) = 1 - e^{{e^{ - y} }} ,$$
(7)

where y is a dimensional variable

$$y = \alpha \left( {Q_{p - } \beta } \right),$$

where \(\beta = \overline{Q}_{p} - 0.45005\sigma_{n - 1}\)

$$\alpha = \frac{1.285}{{\sigma_{n - 1} }}$$
$$y = \frac{{1.2825 \left( {Q_{p} - \overline{Q}_{p} } \right)}}{{\sigma_{n - 1} }} + 0.557$$
(8)
$$Q_{p} = \frac{{\sigma_{n - 1} \left( {y - 0.557} \right)}}{1.2825} + \overline{Q}_{p} ,$$
(9)

where \({\overline{Q} }_{p}\) is the mean of maximum flood discharge and \({\sigma }_{n-1}=\) Standard deviation of variate \({Q}_{p}\).the necessary value is the value of \({\overline{Q} }_{p}\) for a given probability (p), hence Eq. (5) is changed to read as \({y}_{(p)}\)= value of variate y for a given probability (p).

$$= - \ln \left[ { - \ln \left( {1 - p} \right)} \right]$$
(10)
$$y_{T} = - \ln \left[ {\ln .\ln \frac{T}{T - 1}} \right]$$
(11)
$$y_{T} = - \left[ {0.834 + 2.303{\text{log log}}\frac{T}{T - 1}} \right]$$
(12)
$$Q_{pT} = \overline{Q}_{p} + K\sigma_{n - 1} ,$$
(13)

where \({Q}_{pT}\) is the maximum flood value for the return period T, \({\overline{Q} }_{p}\) is the mean peak flood discharge expressed by

$$\overline{Q}_{p} = \frac{{\sum Q_{p} }}{N},$$
(14)

\(denotes\) Standard deviation which is calculated by

$$\sigma_{n - 1} { } = \sqrt {\frac{{\sum \left( {Q_{p} - \overline{Q}_{p} } \right)^{2} }}{N - 1}}$$
(15)
$$K = \frac{{\left( {y_{T} - 0.55} \right)}}{1.2825},$$
(16)

where Eq. (11) gives the value of \(y_{T}\). Equation (15) is changed when N is less and has a finite value.

$$K = \frac{{\left[ {y_{T} - \overline{y}_{n} } \right]}}{{S_{n} }}$$
(17)

and, K is the frequency factor, \(\overline{y}_{n} =\) A decreased mean, based on sample size N (See, Appendix 8), for \(N \to \propto\), \(y_{n} \to 0.557\), \(\overline{y}_{n} =\) Standard deviation reduction, based on sample size N (see Appendix 9), \(N\to \propto\) \({\overline{y} }_{n}\to\) 1.2825.

Appendix 3. Details of Log-Pearson Type III and Log-Normal Method

The mean \(\left(\overline{Z }\right)\), standard deviation \(\left({\sigma }_{z}\right)\), and coefficient of skewness (\({C}_{s}\)) of the base 10 logarithm of annual peak discharge were computed using Eq. (19). If the coefficient of skewness (\({C}_{s}\)) was not statistically different from zero at the 5% level of significance, the data set was assumed to have a log-normal distribution with a coefficient of skewness (\({C}_{s}\)) value equal to zero (Eq. 22). The flood discharge of z variate for various recurrence intervals (\({Z}_{T}\)) was calculated using frequency factor (\({K}_{z}\)), that is, \({K}_{z}\) is a function of recurrence interval and the coefficient of skewness \(({C}_{s}\)) and the variation of the \({K}_{z}=f({C}_{s}, {Z}_{T}\)) (Appendix 5). Upon estimation of recurrence intervals (\({Z}_{T}\)) by following Eq. (20), the corresponding value of peak flood discharge \(({Q}_{pT})\) was obtained by Eq. (23)

$$Z = {\text{log}}\left( {Q_{p} } \right)$$
(18)
$$\overline{Z} = \left( {\frac{{log \left( {Q_{p} } \right)}}{N}} \right)$$
(19)
$$\sigma_{z} = \sqrt {\frac{{\left( {z - \overline{z}} \right)^{2} }}{N}}$$
(20)
$$Z_{T} = \overline{z} + K_{Z} Q_{Z}$$
(21)
$$C_{s} = \frac{{N\sum \left( {z - \overline{z}} \right)^{3} }}{{\left( {N - 1} \right)\left( {N - 2} \right)\left( {\sigma_{z} } \right)^{3} }}$$
(22)
$$Q_{pT = } {\text{Anti}} - {\text{log }}\left( {Z_{T} } \right)$$
(23)

Appendix 4. Geology, physiography, and soil texture of the Central Bengal Basin

 

Sl. no

Class

Area (ha)

Area (%)

Geological Formation

1

Alluvial sand

52,495.3

3.29

2

Alluvial silt

642,691.9

40.29

3

Alluvial silt and clay

322,688.2

20.23

4

Chandina alluvium

130,935

8.21

5

Dihing and Dupi Tila formations

76.32

0.01

6

Madhupur clay residuum

348,715.5

21.86

7

Marsh clay and peat

97,343.2

6.1

8

Young gravelly

49.47

0.01

Grand Total

1,594,995

100

Physiographic Unit

1

Active Brahmaputra–Jamuna Floodplain

113,080.7

7.22

2

Active Ganges Floodplain

14,341.4

0.92

3

Arial Beel

15,169.83

0.97

4

Low Ganges River Floodplain

61,375.35

3.92

5

Madhupur Tract

412,082.4

26.32

6

Middle Meghna River Floodplain

5643.21

0.36

7

Northern and Eastern Hills

39.36

0

8

Northern and Eastern Piedmont Plains

2291.99

0.15

9

Old Brahmaputra Floodplain

379,131.4

24.21

10

Old Meghna Estuarine Floodplain

44,645.74

2.85

11

Young Brahmaputra and Jamuna Floodplain

494,577.6

31.58

12

Urban Area and Others

23,536.46

1.5

Grand Total

1,565,915

100

Soil Texture

1

Clay

274,889.65

17.24

2

Clay Loam

577,508.814

36.21

3

Clay Loam/Clay

5692.1

0.36

4

Clay Loam/Loam

116.95

0.01

5

Clay Loam/Sandy Loam

1725.2

0.11

6

Clay/Clay Loam

3234.85

0.2

7

Loam

414,739.18

26

8

Loam/Sandy Loam

9946.86

0.62

9

River

39,731.32

2.49

10

Sand

27,579.5

1.73

11

Sandy Loam

21,993.24

1.38

12

Sandy Loam/Loam

956.89

0.06

13

Settlement

135,286.03

8.48

14

Waterbodies

12,617.74

0.79

15

Char

4387.22

0.28

16

No Data

64,443.14

4.04

Grand Total

1,594,848.8

100

Appendix 5. Metadata Profile of historical image of the Old Brahmaputra River

Year

Historical Maps

Representative Fraction (R.F)

Atlas

Publisher

Publishing Year and Location

References

1776

Rannell's Map

1:316,800

Bengal Atlas

East India Company

Survey of India Offices, 1780

Rennell (1780)

1840

Tassin's Map

1: 1: 253,000

Tassin's Atlas of the Delta, 1840

Oriental Lithographic Press in Calcutta

Calcutta, 1841

Tassin (1841)

1943

Topographic Survey Map

1: 1: 253,000

Army Map Service (NSS & H)

Corps of Engineers, U.S. Army

Washington, D.C, USA in 1943

US Army (1943)

Appendix 6. Sources of secondary data and description

S.l. No

Data Type

Description

Source

01

Geology

The geological formation of the earth’s crust is vector data that disclose sediment deposits and their geologic history

Geological Survey of Bangladesh (GSB)

02

Physiography

Physiographic unit of Bangladesh with 30 classes in vector file format

CEGIS Archive

03

Discharge (m3/s)

Tabulated data of discharge of the Old Brahmaputra River at the Mymensingh Gaugin station during the years from 1965 to 2022

CEGIS archive

04

Rainfall Data

Monthly average rainfall data for30 years from 1987 to 2017

Bangladesh Metrological Department (BMD)

05

Soil Texture

Soil texture vector data for the year 1995. Soil classified on the basis of soil texture classes

Soil Resource Development Institute (SRDI) of Bangladesh

06

Digital Elevation Model (DEM)

Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 3 (GDEM 003). (spatial resolution 30 m)

EARTHDATA(https://earthdata.nasa.gov)

07

Satellite 2 Image

(2022)

Sentinel-2 satellite Image is an optical high-resolution satellite Image of European Commission and the European Space Agency (spatial resolution 10 m). Generally, the Sentinel-2 data were acquired, processed, and generated by the European Space Agency (ESA) and repackaged by USGS into tile-based bundles

https://scihub.copernicus.eu/dhus/#/home

Appendix 7. Computation of return period and exceedance probability of flood peak discharge of the Old Brahmaputra River (1965–2020)

Year

Peak Flood Discharge (QP) (m)3/s

Rank

Return period (Tr) [(n + 1)/m]

Exceedance PRobability (1/Tr)

1988

4890

1

54.00

0.02

1984

4750

2

27.00

0.04

1974

3820

3

18.00

0.06

1977

3556

4

13.50

0.07

1966

3490

5

10.80

0.09

1980

3340

6

9.00

0.11

1970

3250

7

7.71

0.13

1965

3230

8

6.75

0.15

1976

3210

9

6.00

0.17

1987

3210

10

5.40

0.19

2004

3178.69

11

4.91

0.20

1985

3070

12

4.50

0.22

1975

3060

13

4.15

0.24

1967

3000

14

3.86

0.26

1981

2990

15

3.60

0.28

1968

2900

16

3.38

0.30

1991

2890

17

3.18

0.31

2002

2793.43

18

3.00

0.33

1969

2770

19

2.84

0.35

1978

2770

20

2.70

0.37

1996

2639.39

21

2.57

0.39

1979

2630

22

2.45

0.41

1998

2558.1

23

2.35

0.43

1982

2470

24

2.25

0.44

2020

2431

25

2.16

0.46

2003

2420.37

26

2.08

0.48

2016

2368.37

27

2.00

0.50

1983

2360

28

1.93

0.52

1989

2160

29

1.86

0.54

1999

2089.74

30

1.80

0.56

2019

2088.9

31

1.74

0.57

1990

2050

32

1.69

0.59

1993

2050

33

1.64

0.61

2000

2029.13

34

1.59

0.63

2017

2018.81

35

1.54

0.65

1997

2013.72

36

1.50

0.67

1986

1930

37

1.46

0.69

1995

1611.28

38

1.42

0.70

1992

1480

39

1.38

0.72

2010

1425.41

40

1.35

0.74

2005

1379.37

41

1.32

0.76

2008

1221.59

42

1.29

0.78

2001

1141.9

43

1.26

0.80

2009

1089.21

44

1.23

0.81

2015

1061.92

45

1.20

0.83

2011

940.27

46

1.17

0.85

2018

875.75

47

1.15

0.87

1994

809

48

1.13

0.89

2012

737.45

49

1.10

0.91

2006

626.44

50

1.08

0.93

2013

508.74

51

1.06

0.94

2014

494.85

52

1.04

0.96

2007

487.27

53

1.02

0.98

Average

2271.058491

   

Appendix 8. Frequency Factors K for Gamma and log-Pearson Type III Distributions (Haan, 1977, Table 7.7)

Weighted

Recurrence Interval In Years

    

1.0101

2

5

10

25

50

100

200

Skew coefficient

Percent Chance (> =) = 1-F

     

Cs

99

50

20

10

4

2

1

0.5

3

– 0.667

– 0.396

0.42

1.18

2.278

3.152

4.051

4.97

2.9

– 0.69

– 0.39

0.44

1.195

2.277

3.134

4.013

4.904

2.8

– 0.714

– 0.384

0.46

1.21

2.275

3.114

3.973

4.847

2.7

– 0.74

– 0.376

0.479

1.224

2.272

3.093

3.932

4.783

2.6

– 0.769

– 0.368

0.499

1.238

2.267

3.071

3.889

4.718

2.5

– 0.799

– 0.36

0.518

1.25

2.262

3.048

3.845

4.652

2.4

– 0.832

– 0.351

0.537

1.262

2.256

3.023

3.8

4.584

2.3

– 0.867

– 0.341

0.555

1.274

2.248

2.997

3.753

4.515

2.2

– 0.905

– 0.33

0.574

1.284

2.24

2.97

3.705

4.444

2.1

– 0.946

– 0.319

0.592

1.294

2.23

2.942

3.656

4.372

2

– 0.99

– 0.307

0.609

1.302

2.219

2.912

3.605

4.298

1.9

– 1.037

– 0.294

0.627

1.31

2.207

2.881

3.553

4.223

1.8

– 1.087

– 0.282

0.643

1.318

2.193

2.848

3.499

4.147

1.7

– 1.14

– 0.268

0.66

1.324

2.179

2.815

3.444

4.069

1.6

– 1.197

– 0.254

0.675

1.329

2.163

2.78

3.388

3.99

1.5

– 1.256

– 0.24

0.69

1.333

2.146

2.743

3.33

3.91

1.4

– 1.318

– 0.225

0.705

1.337

2.128

2.706

3.271

3.828

1.3

– 1.383

– 0.21

0.719

1.339

2.108

2.666

3.211

3.745

1.2

– 1.449

– 0.195

0.732

1.34

2.087

2.626

3.149

3.661

1.1

– 1.518

– 0.18

0.745

1.341

2.066

2.585

3.087

3.575

1

– 1.588

– 0.164

0.758

1.34

2.043

2.542

3.022

3.489

0.9

– 1.66

– 0.148

0.769

1.339

2.018

2.498

2.957

3.401

0.8

– 1.733

– 0.132

0.78

1.336

1.993

2.453

2.891

3.312

0.7

– 1.806

– 0.116

0.79

1.333

1.967

2.407

2.824

3.223

0.6

– 1.88

– 0.099

0.8

1.328

1.939

2.359

2.755

3.132

0.5

– 1.955

– 0.083

0.808

1.323

1.91

2.311

2.686

3.041

0.4

– 2.029

– 0.066

0.816

1.317

1.88

2.261

2.615

2.949

0.3

– 2.104

– 0.05

0.824

1.309

1.849

2.211

2.544

2.856

0.2

– 2.178

– 0.033

0.83

1.301

1.818

2.159

2.472

2.763

0.1

– 2.252

– 0.017

0.836

1.292

1.785

2.107

2.4

2.67

0

– 2.326

0

0.842

1.282

1.751

2.054

2.326

2.576

– 0.1

– 2.4

0.017

0.846

1.27

1.716

2

2.252

2.482

– 0.2

– 2.472

0.033

0.85

1.258

1.68

1.945

2.178

2.388

– 0.3

– 2.544

0.05

0.853

1.245

1.643

1.89

2.104

2.294

– 0.4

– 2.615

0.066

0.855

1.231

1.606

1.834

2.029

2.201

– 0.5

– 2.686

0.083

0.856

1.216

1.567

1.777

1.955

2.108

– 0.6

– 2.755

0.099

0.857

1.2

1.528

1.72

1.88

2.016

– 0.7

– 2.824

0.116

0.857

1.183

1.488

1.663

1.806

1.926

– 0.8

– 2.891

0.132

0.856

1.166

1.448

1.606

1.733

1.837

– 0.9

– 2.957

0.148

0.854

1.147

1.407

1.549

1.66

1.749

– 1

– 3.022

0.164

0.852

1.128

1.366

1.492

1.588

1.664

– 1.1

– 3.087

0.18

0.848

1.107

1.324

1.435

1.518

1.581

– 1.2

– 3.149

0.195

0.844

1.086

1.282

1.379

1.449

1.501

– 1.3

– 3.211

0.21

0.838

1.064

1.24

1.324

1.383

1.424

– 1.4

– 3.271

0.225

0.832

1.041

1.198

1.27

1.318

1.351

– 1.5

– 3.33

0.24

0.825

1.018

1.157

1.217

1.256

1.282

– 1.6

– 3.88

0.254

0.817

0.994

1.116

1.166

1.197

1.216

– 1.7

– 3.444

0.268

0.808

0.97

1.075

1.116

1.14

1.155

– 1.8

– 3.499

0.282

0.799

0.945

1.035

1.069

1.087

1.097

– 1.9

– 3.553

0.294

0.788

0.92

0.996

1.023

1.037

1.044

– 2

– 3.605

0.307

0.777

0.895

0.959

0.98

0.99

0.995

– 2.1

– 3.656

0.319

0.765

0.869

0.923

0.939

0.946

0.949

– 2.2

– 3.705

0.33

0.752

0.844

0.888

0.9

0.905

0.907

– 2.3

– 3.753

0.341

0.739

0.819

0.855

0.864

0.867

0.869

– 2.4

– 3.8

0.351

0.725

0.795

0.823

0.83

0.832

0.833

– 2.5

– 3.845

0.36

0.711

0.711

0.793

0.798

0.799

0.8

– 2.6

– 3.899

0.368

0.696

0.747

0.764

0.768

0.769

0.769

– 2.7

– 3.932

0.376

0.681

0.724

0.738

0.74

0.74

0.741

– 2.8

– 3.973

0.384

0.666

0.702

0.712

0.714

0.714

0.714

– 2.9

– 4.013

0.39

0.651

0.681

0.683

0.689

0.69

0.69

– 3

– 4.051

0.396

0.636

0.66

0.666

0.666

0.667

0.667

Appendix 9. Frequency factor (K) for Gumbel’s method

Sample size (N) in years

RP(T) in years

5

10

15

20

25

30

50

60

75

100

1000

15

0.967

1.703

2.117

2.41

2.632

2.823

3.321

3.501

3.721

4.005

6.27

20

0.919

1.625

2.023

2.302

2.517

2.69

3.179

3.352

3.563

3.836

6.01

25

0.888

1.575

1.963

2.235

2.444

2.614

3.088

3.257

3.463

3.729

5.85

30

0.866

1.541

1.922

2.188

2.393

2.56

3.026

3.191

3.393

3.653

5.73

35

0.851

1.516

1.891

2.152

2.354

2.52

2.979

3.142

3.341

3.598

40

0.838

1.495

1.866

2.126

2.326

2.489

2.943

3.104

3.301

3.554

5.58

45

0.829

1.478

1.847

2.104

2.303

2.464

2.913

3.078

3.268

3.52

50

0.82

1.466

1.831

2.086

2.283

2.443

2.889

3.048

3.241

3.491

5.48

55

0.813

1.455

1.818

2.071

2.267

2.426

2.869

3.027

3.219

3.467

60

0.807

1.446

1.806

2.059

2.253

2.411

2.852

3.008

3.2

3.446

65

0.801

1.437

1.796

2.048

2.243

2.398

2.837

2.992

3.183

3.429

70

0.797

1.43

1.788

2.038

2.23

2.387

2.824

2.979

3.169

3.413

5.36

75

0.792

1.423

1.78

2.029

2.22

2.377

2.812

2.967

3.155

3.4

80

0.788

1.417

1.773

2.02

2.212

2.368

2.802

2.956

3.145

3.387

85

0.785

1.413

1.767

2.013

2.205

2.361

2.793

2.946

3.135

3.376

90

0.782

1.409

1.762

2.007

2.198

2.353

2.785

2.938

3.125

3.367

95

0.78

1.405

1.757

2.002

2.193

2.347

2.777

2.93

3.116

3.357

100

0.779

1.401

1.752

1.993

2.187

2.341

2.77

2.922

3.109

3.349

2.61

Appendix 10. Rate of change statistics of the geometry of the Old Brahmaptura River (1776–2022)

Geometry

Rate of Change

1776–1840

1840–1943

1943–2022

1776–2022

Time Interval (64)

Time Interval (103)

Time Interval (79)

Time Interval (246)

Channel Length (km)

0.13

0.20

0.26

0.26

Valley Length (km)

0.09

– 0.05

– 0.07

0.01

Bar Length (km)

1.15

– 1.52

– 1.98

– 0.45

Average Channel Width (m)

– 13.71

– 32.17

– 41.94

– 18.03

Channel Area (ha)

– 652.99

– 257.74

– 336.04

– 304.96

Bar or Char Area (ha)

233.87

– 263.33

– 343.33

– 69.49

Appendix 11. Calculation of flood discharge for different Return Periods (RP) using Gumbel’s Analytical Method (GAM)

RP

\({\overline{Q} }_{p}\)

\({\sigma }_{n-1}\)

K

GAM

\({Q}_{p}={\overline{Q} }_{p}+K{Q}_{n-1}\)

2

2271.06

1047.89

– 0.157

2106.4

5

2271.06

1047.89

0.8151

3125.19

10

2271.06

1047.89

1.4588

3799.72

25

2271.06

1047.89

2.27212

4651.99

50

2271.06

1047.89

2.87548

5284.25

100

2271.06

1047.89

3.47439

5911.84

200

2271.06

1047.89

4.07112

6537.15

1000

2271.06

1047.89

5.45338

7985.61

Appendix 12. Calculation of flood discharge for different Return Periods (RP) using the Log-Pearson Method

RP

\(\overline{Z }\)

\(\sum {\left(z-\overline{z }\right)}^{3}\)

\({\sigma }_{z}\)

\({C}_{s}\)

\({K}_{z}\)

\({Z}_{T}\)

Log-Pearson

\({Q}_{p}=Antilog{Z}_{T}\)

2

3.296

– 0.774

0.253

– 0.96

0.148

3.33

2155.71

5

3.296

– 0.774

0.253

– 0.96

0.854

3.51

3251.76

10

3.296

– 0.774

0.253

– 0.96

1.147

3.59

3856.65

25

3.296

– 0.774

0.253

– 0.96

1.407

3.65

4487.02

50

3.296

– 0.774

0.253

– 0.96

1.549

3.69

4873.78

100

3.296

– 0.774

0.253

– 0.96

1.66

3.72

5199.18

200

3.296

– 0.774

0.253

– 0.96

1.749

3.738

5475.707

1000

3.296

– 0.774

0.253

– 0.96

1.91

3.78

6013.85

Appendix 13. Calculation of flood discharge for different Return Periods (RP) using the Log-normal Method

RP

\(\overline{Z }\)

\(\sum {\left(z-\overline{z }\right)}^{3}\)

\({\sigma }_{z}\)

\({C}_{s}\)

\({K}_{z}\)

\({Z}_{T}\)

Log-normal \({Q}_{p}=Antilog{Z}_{T}\)

2

3.296

– 0.774

0.253

0

0

3.30

1977.72

5

3.296

– 0.774

0.253

0

0.842

3.51

3229.12

10

3.296

– 0.774

0.253

0

1.282

3.62

4172.04

25

3.296

– 0.774

0.253

0

1.751

3.74

5482.09

50

3.296

– 0.774

0.253

0

2.054

3.82

6539.83

100

3.296

– 0.774

0.253

0

2.326

3.88

7662.10

200

3.296

– 0.774

0.253

0

2.576

3.95

8862.70

1000

3.296

– 0.774

0.253

0

3.090

4.08

11,954.81

Appendix 14. Comparison of flood discharge or different return periods with GAM, Log-Pearson and Log-Normal approach

RP

Differences in Discharge between GAM and Log-Pearson

Differences in Discharge between Log-normal and GAM

Differences in Discharge between Log-normal and Log-Pearson

 

Discharge (m3/s)

%

Discharge (m3/s)

%

Discharge (m3/s)

%

2

– 49.31

– 2.28

– 128.68

– 6.109

– 177.99

– 8.25

5

– 126.57

– 3.89

103.93

3.32

– 22.64

– 0.69

10

– 56.93

– 1.47

372.32

9.79

315.39

8.177

25

164.97

3.67

830.1

17.84

995.07

22.17

50

410.47

8.422

1255.58

23.76

1666.05

34.18

100

712.66

13.70

1750.26

29.60

2462.92

47.37

200

1061.443

19.38

2325.55

35.57

3386.993

61.85

1000

1971.76

32.78

3969.2

49.70

5940.96

98.78

Appendix 15. Present status of Ecological diversity of the Old Brahmaputra River

Sl No

Ecological bio-diversity

Types

Local Bengali Name

English Name

Scientific Name

Family

Current Status

Causes

of

decline

1

Fauna

Large-size Fish

Boaal

Wallago

Wallago attu

Siluridae

Vulnerable (VU)

Water scarcity and siltation on the river bed

2

Fauna

Large-size Fish

Silond

Silond Catfish

Silondia Silondia

Schilbeidae

Least Concern (LC)

Water scarcity and siltation on the river bed

3

Fauna

Large-size Fish

Pangas

Yellowtail catfish

Pangasius pangasius

Pangasiidae

Endangered (EN)

Habitat destruction

4

Fauna

Large-size Fish

Aire

Long-Whiskered Catfish

Mystus aor

Bagridae

Vulnerable (VU)

Water scarcity and siltation on the river bed

5

Fauna

Large-size Fish

Baghaire

Devil catfish

Bagarius

Sisoridae

Critically Endangered (CR)

Water scarcity and siltation on river bed

6

Fauna

Large-size Fish

Rita

Rita

Rita Rita

Bagridae

Endangered (EN)

Water scarcity and siltation on river bed

7

Fauna

Large-size Fish

Chital

Clown Knifefish

Notopterus chitala

Notopteridae

Endangered (EN)

Over fishing and habitat reduce

8

Fauna

Large-size Fish

Shol

Striped snakehead

Channa striatus

Channidae

Least Concern (LC)

Habitat reduce

9

Fauna

Large-size Fish

Gazar

Bullseye snakehead

Channa marulius

Channidae

Endangered (EN)

Habitat reduce and water scarcity

10

Fauna

Large-size Fish

Rui

Rohu

Labeo rohita

Cyprinidae

Least Concern (LC)

Over fishing and anthropogenic pollution

11

Fauna

Large-size Fish

Catla

Catla

Catla catla

Cyprinidae

Least Concern (LC)

Over fishing and Over fishing and water scarcity

12

Fauna

Large-size Fish

Mrigal

Mrigal Carp

Cirrhinus cirrhosus

Cyprinidae

Non-threatened

Habitat destruction and water scarcity

13

Fauna

Large-size Fish

Kalibaush

Orange Fin Labeo

Labeo calbasu

Cyprinidae

Least Concern (LC)

Habitat destruction and water scarcity

14

Fauna

Small-size Fish

Singi

Fossil cat

Heteropneustes fossilis

Heteropneustidae

Least Concern (LC)

Over fishing and water scarcity

15

Fauna

Small-size Fish

Tara Baim

Spiny eel

Macrognathus aculeatus

Mastacembelidae

Near Threatened (NT)

Over fishing

16

Fauna

Small-size Fish

Baim/Sal Baim

Tire-track spiny eel

Mastacembelus armatus

Mastacembelidae

Endangered (EN)

Over fishing and water scarcity

17

Fauna

Small-size Fish

Pholi

Bronze featherback

Notopterus notopterus

Notopteridae

Vulnerable (VU)

Over fishing and water scarcity

18

Fauna

Small-size Fish

Magur

Walking catfis

Clarias batrachus

Clariidae

Least Concern (LC)

Over fishing and water scarcity

19

Fauna

Small-size Fish

Koi

Climbing gourami

Anabas cobojius

Anabantidae

Least Concern (LC)

Habitat reduce

20

Fauna

Small-size Fish

Chanda

Elongate glassy perchlet

Chanda nama

Centropomidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

21

Fauna

Small-size Fish

Ranga Chanda

Indian glassy fish

Parambassis ranga

Ambassidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

22

Fauna

Small-size Fish

Bata

Mackerel

Labeo bata

Cyprinidae

Least Concern (LC)

Over fishing and water scarcity

23

Fauna

Small-size Fish

Kalabata

Gangetic latia

Crossocheilus latius

Cyprinidae

Critically Endangered (CR)

Over fishing and water scarcity

24

Fauna

Small-size Fish

Jat Punti

Pool Barb

Puntius sophore

Cyprinidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

25

Fauna

Small-size Fish

Tit punti

Ticto barb

Puntius ticto

Cyprinidae

Vulnerable (VU)

Habitat reduce and anthropogenic pollution

26

Fauna

Small-size Fish

Punti

Swamp barb

Puntius chola

Cyprinidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

27

Fauna

Small-size Fish

Sarpunti

Olive barb

Systomus sarana

Cyprinidae

Near Threatened (NT)

Anthropogenic pollution and water scarcity

28

Fauna

Small-size Fish

Chela

Silver razorbelly minnow

Salmophasia acinaces

Cyprinidae

Least Concern (LC)

Anthropogenic pollution and Habitat reduce

29

Fauna

Small-size Fish

Darkina

Indian flying barb)

Esomus danricus

Cyprinidae

Least Concern (LC)

Anthropogenic pollution and Habitat reduce

30

Fauna

Small-size Fish

Ghonia

Boggut Labeo

Labeo boggut

Cyprinidae

Vulnerable (VU)

Anthropogenic pollution and Habitat reduce

31

Fauna

Small-size Fish

Jaya

Jaya

Aspidoparia jaya

Cyprinidae

Least Concern (LC)

Over fishing and water scarcity

32

Fauna

Small-size Fish

Morar

Aspidoparia

Aspidoparia morar

Cyprinidae

Vulnerable (VU)

Over fishing and water scarcity

33

Fauna

Small-size Fish

Along

Bengala barb

Megarasbora elanga

Cyprinidae

Endangered (EN)

Over fishing and water scarcity

34

Fauna

Small-size Fish

Koksa

Shacra baril

Barilius shacra

Cyprinidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

35

Fauna

Small-size Fish

Barali

Barred Baril

Barilius barila

Cyprinidae

Endangered (EN)

Over fishing and water scarcity

36

Fauna

Small-size Fish

Chapchela

Indian glass barb

Laubuka laubuca

Cyprinidae

Least Concern (LC)

Habitat reduce

37

Fauna

Small-size Fish

Anju

Zebra danio

Danio rerio

Cyprinidae

Near Threatened (NT)

Habitat reduce and anthropogenic pollution

38

Fauna

Small-size Fish

Mola

Indian Carplet

Amblypharyngodon microlepis

Cyprinidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

39

Fauna

Small-size Fish

Lohasura

Coito

Osteobrama cotio

Cyprinidae

Near Threatened (NT)

Water scarcity and siltation on the river bed

40

Fauna

Small-size Fish

Bou Machh

Bengal loach

Botia dario

Botiidae

Endangered (EN)

Habitat reduce

41

Fauna

Small-size Fish

Gutum

Guntea loach

Lepidocephalichthys guntea

Cobitidae

Least Concern (LC)

Habitat reduce and anthropogenic pollution

42

Fauna

Small-size Fish

Lal Kholisha

Dwarf gourami

Trichogaster lalius

Osphronemidae

Least Concern (LC)

Over fishing and water scarcity

43

Fauna

Small-size Fish

Kholisha

Banded Gourami

Trichogaster fasciata

Osphronemidae

Least Concern (LC)

Over fishing and water scarcity

  1. Source: Field Survey (2022), Islam and Kitazawa (2013), Bashar et al. (2020), Ahmed et al. (2013), Raushon et al. (2017)

Appendix 16. Local Boro Rice Cultivation area and production statistics during the time periods 2011–2012 and 2020–2021 in the Old Brahmaputra River Basin districts.

District

2011–2012

2020–2021

Change Statistics of Boro Crops (2011–2012) and (2020–2021)

Boro Rice Cultivated Area (Ha)

Boro Rice Production (M. Ton

Boro Rice Cultivated Area (Ha)

Boro Rice Production (M. Ton)

Boro Rice Cultivated Area Loss /Increase (ha)

Boro Rice Cultivated Area Loss /Increase (%)

Boro Rice Cultivated Area Loss /Increase Rate (Ha/yr)

Boro Rice Production Change (M. Ton)

Boro Rice Production Change (%)

Boro Rice Production Change (M. Ton/Yr)

Dhaka

328

593

380

869

276

15.85

30.67

276

46.543

30.67

Gazipur

275

434

157

281

– 153

– 42.91

– 17.00

– 153

– 35.253

– 17.00

Jamalpur

1248

1248

397

620

– 628

– 68.19

– 69.78

– 628

– 50.321

– 69.78

Kishoreganj

663

943

437

859

– 84

– 34.09

– 9.33

– 84

– 8.908

– 9.33

Manikganj

1609

2649

688

1158

– 1491

– 57.24

– 165.67

– 1491

– 56.285

– 165.67

Munshiganj

408

610

65

103

– 507

– 84.07

– 56.33

– 507

– 83.115

– 56.33

Mymensingh

670

1330

116

251

– 1079

– 82.69

– 119.89

– 1079

– 81.128

– 119.89

Narayanganj

268

505

70

65

– 440

– 73.88

– 48.89

– 440

– 87.129

– 48.89

Narsingdi

272

530

160

310

– 220

– 41.18

– 24.44

– 220

– 41.509

– 24.44

Sherpur

266

555

52

93

– 462

– 80.45

– 51.33

– 462

– 83.243

– 51.33

Tangail

2107

1750

676

1168

– 582

– 67.92

– 64.67

– 582

– 33.257

– 64.67

 

8114

 

3198

       
  1. Source: BBS (Bangladesh Bureau of Statistics) (2012, 2022)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.N., Biswas, R.N., Mim, S.I. et al. Modeling metamorphosis of the Old Brahmaputra River and associated impacts on landscapes in the Central Bengal Basin, Bangladesh. Int J Earth Sci (Geol Rundsch) 112, 1823–1851 (2023). https://doi.org/10.1007/s00531-023-02328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02328-z

Keywords

Navigation