Skip to main content

Advertisement

Log in

Geochemistry of the Triassic–Jurassic lateritic bauxites of the Salt Range: implications for eastward extension of the Tethyan bauxite deposits into Pakistan

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Bauxite deposits are residuals of intense lateritic weathering under warm and humid palaeoclimates. The Triassic–Jurassic Boundary (TJB) interval in the Salt Range, Pakistan, provides one such case of bauxite deposits formation along the SW tropical Neo-Tethyan passive margin. Thick, red bauxites/bauxitic clays occur at the contact of the Upper Triassic Kingriali Formation and the Lower Jurassic Datta Formation. These bauxites are rich in kaolinite, haematite, boehmite (Al2O3 and Fe2O3), and are depleted in silica (SiO2). Geochemical proxies of the succession signal intense chemical weathering of the parent siliciclastics under Mesozoic “greenhouse” conditions. Certain trace elements and Rare Earth Elements (REEs) are enriched up to seven times compared to mean Upper Continental Crust (UCC) values. These bauxites are synchronous with the Amir-Abad bauxites of the Alborz Mountains, central Iranian Plateau, that occur between the thick Triassic dolomite/dolomitic limestones of the Elika Formation and the Lower Jurassic Shemshak Formation. Thus, the Salt Range, Pakistan, provides evidence for the eastward extension of the Irano-Himalayan bauxites that are extended westward into Mediterranean bauxites, and the western Tethys by correlation with European bauxites. The TJB bauxites in the Salt Range support increased chemical weathering on the SW Neo-Tethyan passive margin and correspond to an associated sea-level fall during this time interval. This supports the Neo-Tethyan tectonics contribution in the formation of bauxite deposits during the Triassic–Jurassic in addition to the widely studied karst-bauxites that formed in response to the subduction and orogenic processes in the Paleo-Tethys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data are provided in the tables.

References

  • Abedini A, Calagari AA (2013) Geochemical characteristics of bauxites: the Permian Shahindezh horizon, NW Iran. N J Geol Paläont Abh 270:301–324. https://doi.org/10.1127/0077-7749/2013/0371

    Article  Google Scholar 

  • Abedini A, Calagari AA (2014) REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turk J Earth Sci 23:513–532. https://doi.org/10.3906/yer-1404-11

    Article  Google Scholar 

  • Abedini A, Calagari AA (2015) Mobilization and redistribution of major and trace elements in a lateritic profile: the Sheikh-Marut deposit, NW Iran. Arab J Geosci 8:10871–10882. https://doi.org/10.1007/s12517-015-1992-3

    Article  Google Scholar 

  • Abedini A, Khosravi M (2020) Geochemical constraints on the Triassic–Jurassic Amir-Abad karst-type bauxite deposit, NW Iran. J Geochem Explor 211:106489. https://doi.org/10.1016/j.gexplo.2020.106489

    Article  Google Scholar 

  • Abedini A, Calagari AA, Azizi MR (2018) The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: evidence from the Kanigorgeh deposit, NW Iran. J Geochem Explor 186:129–142. https://doi.org/10.1016/j.gexplo.2017.12.007

    Article  Google Scholar 

  • Abedini A, Khosravi M, Calagari AA (2019) Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: implications for parental affinity and factors controlling the distribution of elements. J Geochem Explor 200:249–265. https://doi.org/10.1016/j.gexplo.2018.09.004

    Article  Google Scholar 

  • Abedini A, Mongelli G, Khosravi M, Sinisi R (2020) Geochemistry and secular trends in the middle–late Permian karst bauxite deposits, northwestern Iran. Ore Geol Rev 124:103660. https://doi.org/10.1016/j.oregeorev.2020.103660

    Article  Google Scholar 

  • Ahmadnejad F, Zamanian H, Taghipour B, Zarasvandi A, Buccione R, Ellahi SS (2017) Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geol Rev 86:755–783. https://doi.org/10.1016/j.oregeorev.2017.04.006

    Article  Google Scholar 

  • Aleva GJJ (1994) Laterites: concepts, geology, morphology and chemistry. International Soil Reference and Information Centre (ISRIC), Wageningen, Netherlands

  • Angiolini L, Gaetani M, Muttoni G, Stephenson MH, Zanchi A (2007) Tethyan oceanic currents and climate gradients 300 m.y. ago. Geology 35(12):1071–1074. https://doi.org/10.1130/G24031A.1

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam formation, southern India: Implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297. https://doi.org/10.1306/082803740285

    Article  Google Scholar 

  • Babechuk MG, Widdowson M, Kamber BS (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem Geol 363:56–75. https://doi.org/10.1016/j.chemgeo.2013.10.027

    Article  Google Scholar 

  • Bárdossy G (1982) Karst bauxites. Elsevier, New York

    Google Scholar 

  • Bárdossy G, Aleva GJJ (1990) Lateritic bauxites. Development on economic geology, vol 27. Akadémiai Kiadó. Elsevier, Amsterdam

  • Bárdossy G, Combes PJ (1999) Karst bauxites: interfingering of deposition and palaeoweathering. In: Thiry M, Simon-Coinçon R (eds) Palaeoweathering, palaeosurfaces and related continental deposits. Blackwell Publishing Ltd., Oxford, pp 189–206

    Google Scholar 

  • Beerling DJ, Berner RA (2002) Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event. Glob Biogeochem Cycles 16(3):10(1–13). https://doi.org/10.1029/2001GB001637

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265

    Article  Google Scholar 

  • Bhargava ON, Frank W, Bertle R (2011) Late Cambrian deformation in the Lesser Himalaya. J Asian Earth Sci 40(1):201–212. https://doi.org/10.1016/j.jseaes.2010.07.015

    Article  Google Scholar 

  • Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Troy Rasbury E, Et-Touhami M (2013) Zircon U–Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–945. https://doi.org/10.1126/science.1234204

    Article  Google Scholar 

  • Boni M, Rollinson G, Mondillo N, Balassone G, Santoro L (2013) Quantitative mineralogical characterization of karst bauxite deposits in the Southern Apennines, Italy. Eco Geol 108:813–833. https://doi.org/10.2113/econgeo.108.4.813

    Article  Google Scholar 

  • Boulangé B (1984) Les formations bauxitiques latéritiques de Côte d’Ivoire. Les facies, leur transformation, leur distribution et l’évolution du modelé. Trav. Doc. ORSTOM, Paris, pp 1–341

  • Brindley GW, Brown G (1980) Quantitative X-ray mineral analysis of clays. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification, vol 5. Mineralogical Society of Great Britain and Ireland, Twickenham, pp 411–438

  • Calagari AA, Abedini A (2007) Geochemical investigations on permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, west-Azarbaidjan, Iran. J Geochem Explor 94:1–18. https://doi.org/10.1016/j.gexplo.2007.04.003

    Article  Google Scholar 

  • Callegaro S, Rigo M, Chiaradia M, Marzoli A (2012) Latest Triassic marine Sr isotopic variations, possible causes and implications. Terra Nova 24:130–135. https://doi.org/10.1111/j.1365-3121.2011.01046.x

    Article  Google Scholar 

  • Campodonico VA, Pasquini AI, Lecomte KL, García MG, Depetris PJ (2019) Chemical weathering in subtropical basalt-derived laterites: a mass balance interpretation (Misiones, NE Argentina). Catena 173:352–366. https://doi.org/10.1016/j.catena.2018.10.027

    Article  Google Scholar 

  • Capriolo M, Mills BJW, Newton RJ, Dal Corso J, Dunhill AM, Wignall PB, Marzoli A (2022) Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction. Glob Planet Change 209:103731. https://doi.org/10.1016/j.gloplacha.2021.103731

    Article  Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer, Berlin

    Book  Google Scholar 

  • Chen J, Wang Q, Zhang Q, Carranza EJ, Wang J (2018) Mineralogical and geochemical investigations on the iron-rich gibbsitic bauxite in Yongjiang basin, SW China. J Geochem Explor 188:413–426. https://doi.org/10.1016/j.gexplo.2018.02.007

    Article  Google Scholar 

  • Clarke OM (1966) The formation of bauxite on karst topography in Eufaula district, Alabama, and Jamaica, West Indies. Econ Geol 61:903–916

    Article  Google Scholar 

  • Cloetingh S (1986) Intraplate stresses: a new tectonic mechanism for fluctuations of relative sea level. Geology 14(7):617–620. https://doi.org/10.1130/0091-7613(1986)14%3C617:ISANTM%3E2.0.CO;2

    Article  Google Scholar 

  • Cloetingh S (1988) Intraplate stresses: a tectonic cause for third-order cycles in apparent sea-level? vol 42, SEPM Special Publications, pp 19–29

  • Cloetingh S, Burov E (2011) Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Res 23(3):257–290. https://doi.org/10.1111/j.1365-2117.2010.00490.x

    Article  Google Scholar 

  • Cohen AS, Coe AL (2007) The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os-isotope evolution of seawater. Palaeogeogr Palaeoclimatol Palaeoecol 244:374–390. https://doi.org/10.1016/j.palaeo.2006.06.036

    Article  Google Scholar 

  • Combes PJ (1972) Les différentes types de bauxites sur substratum carbonaté dans le Languedoc et l’Ariége. Remarques sur la notion d’allochtonie et d’autochtonie. Comptes Rendus De l’académie des Sciences 274:1613–1616

    Google Scholar 

  • Combes PJ (1990) Typologie, cadre geodynamique des bauxites Francaises. Geodinamica Acta (paris) 4(2):91–110

    Article  Google Scholar 

  • Combes PJ (1991) Les principux types de gisement et modèlès genetiques de bauxites karstiques en France et en Sardaigne. Acta Geol Hung 34(3):195–214

    Google Scholar 

  • Combes PJ, Bárdossy G (1995) Geodynamics of bauxites in the Tethyan realm. In: Nairn AEM, Ricou LE, Vrielynck B, Dercourt J (eds) The Tethys Ocean. Springer, Boston, pp 347–365

    Chapter  Google Scholar 

  • Combes PJ, Peybernes B (1987) Tectonique et eustatisme dans les gisements de bauxite de l’Ariege (Pyrénees, France). In: Proc.2eme Congrés Francaise de Sedimentologie, Paris, pp 16–20

  • Combes PJ, Peybernes B (1991) Role de l’eustatisme dans la genese des bauxites de type Ariege (Pyrénees Centrales). C R Acad Sci Paris t.313 Ser II:669–676

  • Condie K (1991) Another look at REEs in shales. Geochim Cosmochim Acta 55:2527–2531

    Article  Google Scholar 

  • Czier Z (1994) On a new record of Selenocarpus muensterianus (Presl) Schenk from the fireclay formation of Șuncuiuș (Romania) and the lower Liassic age of the flora. Rev Palaeobot Palynol 82(3–4):351–363

    Article  Google Scholar 

  • D’Argenio B, Mindszenty A (1992) Tectonic and climatic control on paleokarst and bauxites. Giorn Geol 54(1):207–218

    Google Scholar 

  • D’Argenio B, Mindszenty A (1995) Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities. Eclogae Geol Helv 88(3):453–499

    Google Scholar 

  • Dan W, Wang Q, Murphy JB, Zhang XZ, Xu YG, White WM, Jiang ZQ, Ou Q, Hao LL, Qi Y (2021) Short duration of Early Permian Qiangtang-Panjal large igneous province: implications for origin of the Neo-Tethys Ocean. Earth Planet Sci Let 568:117054. https://doi.org/10.1016/j.epsl.2021.117054

    Article  Google Scholar 

  • Davies JHFL, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8:15596. https://doi.org/10.1038/ncomms15596

    Article  Google Scholar 

  • Dupont-Nivet G, Lippert PC, Van Hinsbergen DJ, Meijers MJ, Kapp P (2010) Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. Geophys J Int 182:1189–1198. https://doi.org/10.1111/j.1365-246X.2010.04697.x

    Article  Google Scholar 

  • Durn G, Ottner F, Tišljar J, Mindszenty A, Barudžija U (2003) Regional subaerial unconformities in shallow-marine carbonate sequences of Istria: sedimentology, mineralogy, geochemistry and micromorphology of associated bauxites, palaeosols and pedo-sedimentary complexes. In: Tišljar J, Barudžija U, Durn G (eds) Field-trip guidebook P8, 22nd IAS meeting of sedimentology—Opatija, Hrvatska, Rudarsko-geološko-naftni fakultet, Zagreb, pp 209–254

  • Esmaeily D, Rahimpour-Bonab H, Esna-Ashari A, Kananian A (2010) Petrography and geochemistry of the Jajarm Karst bauxite ore deposit, northeast Iran: implications for source rock material and ore genesis. Turk J Earth Sci 19:267–284. https://doi.org/10.3906/yer-0806-15

    Article  Google Scholar 

  • Gao D, Sheng Z, Shi S, Chen L (1992) Studies on the bauxite deposit in Central Guizhou, China. Guizhou Science and Technology Publishing House, Guiyang, pp 11–20 (in Chinese)

  • Ge Y, Al-Suwaidi A, Shi M, Li Q, Morad S, Steuber T (2019) Short-term variation of ooid mineralogy in the Triassic–Jurassic boundary interval and its environmental implications: evidence from the equatorial Ghalilah Formation, United Arab Emirates. Glob Planet Change 182:103006. https://doi.org/10.1016/j.gloplacha.2019.103006

    Article  Google Scholar 

  • Ghasemi H, Jamshidi K (2013) Investigation of source region properties of alkaline basic rocks in the base of Shemshak Formation in the eastern Alborz zone. Iran J Geol 7:17–29 (in Persian)

    Google Scholar 

  • Green PF, Japsen P, Chalmers JA, Bonow JM, Duddy IR (2018) Post-breakup burial and exhumation of passive continental margins: seven propositions to inform geodynamic models. Gondwana Res 53:58–81. https://doi.org/10.1016/j.gr.2017.03.007

    Article  Google Scholar 

  • Guinoiseau D, Fekiacova Z, Allard T, Druhan JL, Balan E, Bouchez J (2021) Tropical weathering history recorded in the silicon isotopes of lateritic weathering profiles. Geophys Res Lett 48(19):e2021GL092957. https://doi.org/10.1029/2021GL092957

    Article  Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclim Palaeoecol 167:23–37. https://doi.org/10.1016/S0031-0182(00)00229-7

    Article  Google Scholar 

  • Hanilçi N (2013) Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. J Geochem Explor 133:118–137. https://doi.org/10.1016/j.gexplo.2013.04.004

    Article  Google Scholar 

  • Heimdal TH, Jones M, Svensen H (2020) Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proc Natl Acad Sci USA 117:11968–11974. https://doi.org/10.1073/pnas.2000095117

    Article  Google Scholar 

  • Hesselbo SP, Korte C, Ullmann CV, Ebbesen AL (2020) Carbon and oxygen isotope records from the southern Eurasian Seaway following the Triassic–Jurassic boundary: parallel long-term enhanced carbon burial and seawater warming. Earth Sci Rev 203:103131. https://doi.org/10.1016/j.earscirev.2020.103131

    Article  Google Scholar 

  • Hillebrandt AV, Krystyn L, Kürschner WM, Bonis NR, Ruhl M, Richoz S, Schobben MAN, Urlichs M, Bown PR, Kment K, McRoberts CA (2013) The global stratotype sections and point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria). Episodes 36(3):162–198. https://doi.org/10.18814/epiiugs/2013/v36i3/001

    Article  Google Scholar 

  • Hou YL, Zhong YT, Xu YG, He B (2017) The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U-Pb–Hf–O isotopes of detrital zircons. Lithos 278:240–254. https://doi.org/10.1016/j.lithos.2017.01.013

    Article  Google Scholar 

  • Huang C, Gong ZT (2001) Geochemical implication of rare earth elements in process of soil development. J Rare Earths 19:57–62

    Google Scholar 

  • Huang B, Yan YG, Piper JDA, Zhang DH, Yi ZY, Yu S, Zhou TH (2018) Paleomagnetic constraints on the paleogeography of the East Asian blocks during late Paleozoic and early Mesozoic times. Earth Sci Rev 186:8–36. https://doi.org/10.1016/j.earscirev.2018.02.004

    Article  Google Scholar 

  • Iqbal S, Jan IU, Akhter MG, Bibi M (2015) Palaeoenvironmental and sequence stratigraphic analyses of the Jurassic Datta Formation, Salt Range, Pakistan. J Earth Syst Sci 124:747–766. https://doi.org/10.1007/s12040-015-0572-y

    Article  Google Scholar 

  • Iqbal S, Wagreich M, Kuerschner WM, Gier S, Bibi M (2019) Hot-house climate during the Triassic/Jurassic transition: the evidence of climate change from the southern hemisphere (Salt Range, Pakistan). Glob Planet Change 172:15–32. https://doi.org/10.1016/j.gloplacha.2018.09.008

    Article  Google Scholar 

  • Iqbal S, Wagreich M, Bibi M, Jan IU, Gier S (2021) Multi-proxy provenance analyses of the Kingriali and Datta formations (Triassic–Jurassic transition): evidence for westward extension of the Neo-Tethys passive margin from the Salt Range (Pakistan). Minerals 11(6):573. https://doi.org/10.3390/min11060573

    Article  Google Scholar 

  • Jadoul F, Berra F, Garzanti E (1998) The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). J Asian Earth Sci 16(2–3):173–194. https://doi.org/10.1016/S0743-9547(98)00013-0

    Article  Google Scholar 

  • Kadri IB (1995) Petroleum geology of Pakistan. Pakistan Petroleum Limited, Karachi

    Google Scholar 

  • Karadağ M, Kupeli S, Aryk F, Ayhan A, Zedef V, Doyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya–Southern Turkey). Chem Erde Geochem 69:143–159. https://doi.org/10.1016/j.chemer.2008.04.005

    Article  Google Scholar 

  • Kennedy GC (1959) Phase relations in the system Al2O3/H2O at high temperatures and pressures. Am J Sci 257:563–573. https://doi.org/10.2475/ajs.257.8.563

    Article  Google Scholar 

  • Khosravi M, Mongelli G, Abedini A, Alipour S (2017) The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: critical metals distribution and parental affinities. J Afr Earth Sci 129:960–972. https://doi.org/10.1016/j.jafrearsci.2017.02.024

    Article  Google Scholar 

  • Kiaeshkevarian M, Calagari AA, Abedini A, Shamanian G (2020) Geochemical and mineralogical features of karst bauxite deposits from the Alborz zone (Northern Iran): implications for conditions of formation, the behavior of trace and rare earth elements and parental affinity. Ore Geol Rev 125:103691. https://doi.org/10.1016/j.oregeorev.2020.103691

    Article  Google Scholar 

  • Kidder DL, Worsley TR (2010) Phanerozoic large igneous provinces (LIPs), HEATT (haline euxinic acidic thermal transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclim Palaeoecol 295(1):162–191. https://doi.org/10.1016/j.palaeo.2010.05.036

    Article  Google Scholar 

  • Klootwijk CT, Gee JS, Peirce JW, Smith GM, McFadden PL (1992) An early India-Asia contact: paleomagnetic constraints from Ninety east Ridge, ODP Leg 121. Geology 20:395–398. https://doi.org/10.1130/0091-7613(1992)020%3C0395:AEIACP%3E2.3.CO;2

    Article  Google Scholar 

  • Komlóssy G (1978) Minéralogie, geochimie et génetique des bauxitres du Vietnam du Nord. Acta Geol Hung 20(3–4):199244

    Google Scholar 

  • Korte C, Kozur HW, Bruckschen P, Veizer J (2003) Strontium isotope evolution of late Permian and Triassic seawater. Geochim Cosmochim Acta 67:47–62. https://doi.org/10.1016/S0016-7037(02)01035-9

    Article  Google Scholar 

  • Korte C, Hesselbo SP, Jenkins HC, Rickaby REM, Spotl C (2009) Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. J Geol Soc 166:431–445. https://doi.org/10.1144/0016-76492007-177

    Article  Google Scholar 

  • Kuerschner WM, Iqbal S, Wagreich M, Jan I, Gier S (2017) Palynology and carbon isotope stratigraphy of the Triassic–Jurassic transition in the Salt Range (Pakistan). In: EGU general assembly conference abstracts, Vienna, Austria, 23–28 April 2017, vol 19, EGU, p 15291

  • Laznicka P (2006) Giant metallic deposits: future sources of industrial metals. Springer, Heidelberg

    Google Scholar 

  • Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY, Suo YH (2018) Closure of the Proto-Tethys Ocean and early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci Rev 186:37–75. https://doi.org/10.1016/j.earscirev.2017.01.011

    Article  Google Scholar 

  • Li G, Xue S, Liu J, Tang X, Hu X, Deng J (2021) Petrogenesis of Late Carboniferous–Early Permian mafic igneous series in the Baoshan block: implications to birth of Neo-Tethys and generation of magmatic sulfide deposit. Ore Geol Rev 139:104553. https://doi.org/10.1016/j.oregeorev.2021.104553

    Article  Google Scholar 

  • Ling K, Zhu X, Wang Z, Han T, Tang H, Chen W (2013) Metallogenic model of bauxite in Central Guizhou Province: an example of Lindai deposit. Acta Geol Sin Engl 87:1630–1642. https://doi.org/10.1111/1755-6724.12164

    Article  Google Scholar 

  • Ling KY, Zhu XQ, Tang HS, Wang ZG, Yan HW, Han T, Chen WY (2015) Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, central Guizhou province, southwest China. Ore Geol Rev 65:84–96. https://doi.org/10.1016/j.oregeorev.2014.09.003

    Article  Google Scholar 

  • Ling KY, Zhu XQ, Tang HS, Li SJ (2017) Importance of hydrogeological conditions during formation of the karstic bauxite deposits, Central Guizhou Province, Southwest China: a case study at Lindai deposit. Ore Geol Rev 82:198–216. https://doi.org/10.1016/j.oregeorev.2016.11.033

    Article  Google Scholar 

  • Ling KY, Zhu XQ, Tang HS, Du SJ, Gu J (2018) Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: implications for the behavior of trace and rare earth elements. J Geochem Explor 190:170–186. https://doi.org/10.1016/j.gexplo.2018.03.007

    Article  Google Scholar 

  • Liu XF, Wang QF, Deng J, Zhang QZ, Sun SL, Meng JY (2010) Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, Western Guangxi, China. J Geochem Explor 105:137–152. https://doi.org/10.1016/j.gexplo.2010.04.012

    Article  Google Scholar 

  • Long Y, Chi G, Liu J, Jin Z, Tangen D (2017) Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China. Ore Geol Rev 91:404–418. https://doi.org/10.1016/j.oregeorev.2017.09.014

    Article  Google Scholar 

  • Loughnan FC (1969) Chemical weathering of the silicate minerals. American Elsevier, p 154

  • Ma JL, Wei GJ, Xu YG, Long WG, Sun WD (2007) Mobilization and redistribution of major and trace elements during extreme weathering of basalt in Hainan Island, south China. Geochim Cosmochim Acta 71:3223–3237. https://doi.org/10.1016/j.gca.2007.03.035

    Article  Google Scholar 

  • MacLean WH, Bonavia FF, Sanna G (1997) Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Miner Deposita 32:607–616. https://doi.org/10.1016/S0009-2541(97)00042-9

    Article  Google Scholar 

  • Maignien R (1966) Compte rendu de la recherches sur les laterites. Recherches sur les resources naturelles. UNESCO 4

  • Maksimović (1991) Contribution to the geochemistry of the rare earth elements in the karst bauxites deposits of Yugoslavia and Greece. Geoderma 51(1–4):93–109

    Article  Google Scholar 

  • Maksimović Z, Pantó G (1991) Contribution to the geochemistry of the rare earth elements in the karst–bauxite deposits of Yugoslavia and Greece. Geoderma 51:93–109. https://doi.org/10.1016/0016-7061(91)90067-4

    Article  Google Scholar 

  • Mameli P, Mongelli G, Oggiano G, Dinelli E (2007) Geological, geochemical, and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy): insights on conditions of formation and parental affinity. Int J Earth Sci 96:887–902. https://doi.org/10.1007/s00531-006-0142-2

    Article  Google Scholar 

  • Marzoli A, Callegaro S, Dal Corso J, Davies J, Chiaradia M, Youbi N, Bertrand H, Reisberg L, Merle R, Jourdan F (2018) The Central Atlantic Magmatic Province (CAMP): a review. In: Tanner LH (ed) The Late Triassic world. Springer, Cham, pp 91–125. https://doi.org/10.1007/978-3-319-68009-5_4

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285:1386–1390. https://doi.org/10.1126/science.285.5432.1386

    Article  Google Scholar 

  • Mészáros N, Barbu O, Codrea V (1999) The nannoplankton from the Șuncuiuș formation (Lower Liassic; Pădurea Craiului Mountains, Western Romania). Stud UBB Geol 64(2):89–101

    Google Scholar 

  • Metcalfe I (2021) Multiple Tethyan Ocean basins and orogenic belts in Asia. Gondwana Res 100:87–130. https://doi.org/10.1016/j.gr.2021.01.012

    Article  Google Scholar 

  • Meyer FM (2004) Availability of bauxite reserves. Nat Resour Res 13:161–172

    Article  Google Scholar 

  • Michalik J, Biron A, Lintnerova O, Gotz AE, Ruckwied K (2010) Climate change at the Triassic/Jurassic boundary in the northwestern Tethyan realm, inferred from sections in the Tatra Mountains (Slovakia). Acta Geol Pol 60(4):535–548

    Google Scholar 

  • Michalik J, Lintnerová O, Wójcik-Tabol P, Gaździcki A, Grabowski J, Golej M, Šimo V, Zahradníková B (2013) Paleoenvironments during the Rhaetian transgression and the colonization history of marine biota in the Fatric Unit (Western Carpathians). Geol Carpath 64(1):39–62. https://doi.org/10.2478/geoca-2013-0003

    Article  Google Scholar 

  • Mircescu CV, Tămaș T, Bucur II, Săsăran E, Ungureanu R, Mircescu V, Mircescu E, Oprişa A (2021) Upper Triassic-Lower Jurassic continental carbonates from the Apuseni Mountains, Romania: facies, lithology and paleoenvironments. Facies 67(2):1–23. https://doi.org/10.1007/s10347-021-00622-3

    Article  Google Scholar 

  • Mondillo N, Boni M, Balassone G, Rollinson G (2011) Karst bauxites in the Campania Apennines (southern Italy): a new approach. Period Mineral 80:407–432. https://doi.org/10.1023/B:NARR.0000046918.50121.2e

    Article  Google Scholar 

  • Mongelli G (1997) Ce-anomalies in the textural components of upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chem Geol 140:69–79

    Article  Google Scholar 

  • Mongelli G, Boni M, Buccione R, Sinisi R (2014) Geochemistry of the Apulian karst bauxites southern Italy: chemical fractionation and parental affinities. Ore Geol Rev 63:9–21. https://doi.org/10.1016/j.oregeorev.2014.04.012

    Article  Google Scholar 

  • Mongelli G, Buccione R, Gueguen E, Langone A, Sinisi R (2016) Geochemistry of the Apulian allochthonous karst bauxite, Southern Italy: distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geol Rev 77:246–259. https://doi.org/10.1016/j.oregeorev.2016.03.002

    Article  Google Scholar 

  • Mongelli G, Boni M, Oggiano G, Mameli P, Sinisi R, Buccione R, Mondillo N (2017) Critical metals distribution in Tethyan karst bauxite: the cretaceous Italian ores. Ore Geol Rev 86:526–536. https://doi.org/10.1016/j.oregeorev.2017.03.017

    Article  Google Scholar 

  • Moore DM, Reynolds RC Jr (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press (OUP), Oxford

    Google Scholar 

  • Nahon D, Carozzi AV, Parron C (1980) Lateritic weathering as a mechanism for the generation of ferruginous ooids. J Sediment Petrol 50:1287–1298

    Google Scholar 

  • Najman Y, Appel E, BouDagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G et al (2010) Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res Space Phys 115:12416. https://doi.org/10.1029/2010JB007673

    Article  Google Scholar 

  • Nesbit HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210. https://doi.org/10.1038/279206a0

    Article  Google Scholar 

  • Nia R (1967) Geologische, petrographische, geochemische Untersuchungen zum Problem der Boehmit-Diaspore-Genese in griechischen Oberkreide Bauxiten der Parnmass-Kiona Zone. Diss Erlang Doktorgrade Univ Hamburg 1–133

  • Onoue T, Michalík J, Shirozu H, Yamashita M, Yamashita K, Kusaka S, Soda K (2022) Extreme continental weathering in the northwestern Tethys during the end-Triassic mass extinction. Palaeogeogr Palaeoclim Palaeoecol 594:110934. https://doi.org/10.1016/j.palaeo.2022.110934

    Article  Google Scholar 

  • Özlü N (1983) Trace-element content of “Karst Bauxites” and their parent rocks in the Mediterranean belt. Mineral Deposita 18:469–476

    Article  Google Scholar 

  • Öztürk H, Hein JR, Hanilçi N (2002) Genesis of the Doğankuzu and Mortaş bauxite deposits, Taurides, Turkey separation of Al, Fe and Mn and implications for passive margin metallogeny. Econ Geol 97:1063–1077. https://doi.org/10.2113/gsecongeo.97.5.1063

    Article  Google Scholar 

  • Pajović M, Radusinović S (2015) Stratigraphy of bauxites in Montenegro; geological survey of Montenegro, Podgorica. Geol Bull 16:27–57

    Google Scholar 

  • Pálfy J, Deme’ny A, Haas J, Hete’nyi M, Orchard MJ, Veti I (2001) Carbon isotope anomaly and other geochemical changes at the Triassic–Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050. https://doi.org/10.1130/0091-7613(2001)029%3C1047:CIAAOG%3E2.0.CO;2

    Article  Google Scholar 

  • Perri F (2018) Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: a review of geochemical proxies. Geol Mag 155(4):944–954. https://doi.org/10.1017/S0016756816001205

    Article  Google Scholar 

  • Phillips JD, Lampe M, King RT, Cedillo M, Beachley R, Grantham C (1997) Ferricrete formation in the North Carolina Coastal Plain. Z Geomorphol 41:67–81

    Article  Google Scholar 

  • Pillevuit A (1993) Les Blocs exotiques du Sultanat d’Oman, évolution paléogéographique d’une marge passive flexurale. Mémoires Géologie Lausanne 17:1–249

    Google Scholar 

  • Putzolu F, Piccolo Papa A, Mondillo N, Boni M, Balassone G, Mormone A (2018) Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals 8:298. https://doi.org/10.3390/min8070298

    Article  Google Scholar 

  • Radusinović S, Papadopoulos A (2021) The potential for REE and associated critical metals in karstic bauxites and bauxite residue of Montenegro. Minerals 11(9):975. https://doi.org/10.3390/min11090975

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1982) Mass extinction in the marine fossil record. Science 215:1501–1503

    Article  Google Scholar 

  • Reinhardt N, Proenza JA, Villanova-de-Benavent C, Aiglsperger T, Bover-Arnal T, Torró T, Salas R, Dziggel A (2018) Geochemistry and mineralogy of rare earth elements (REE) in bauxitic ores of the Catalan Coastal Range, NE Spain. Minerals 8:562. https://doi.org/10.3390/min8120562

    Article  Google Scholar 

  • Ronov AB, Balashov YA, Migdisov AA (1967) Geochemistry of REE’s in a sedimentary cycle. Geochem Int 14:1–17

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland H, Turekian K (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Ruhl M, Hesselbo S, Al-Suwaidi A, Jenkyns H, Damborenea S, Manceñido M, Storm M, Mather T, Riccardi A (2020) On the onset of Central Atlantic Magmatic Province (CAMP) volcanism and environmental and carbon-cycle change at the Triassic–Jurassic transition (Neuquén Basin, Argentina). Earth Sci Rev 208:103229. https://doi.org/10.1016/j.earscirev.2020.103229

    Article  Google Scholar 

  • Schaller MF, Wright JD, Kent DV (2011) Atmospheric PCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–1409. https://doi.org/10.1126/science.1199011

    Article  Google Scholar 

  • Schellmann W (1986) A new definition of laterite. Mem Geol Sur India 120:1–7

    Google Scholar 

  • Schroll E, Sauer D (1964) Ein Beitrag zur Geochemie der seltenen Elemente in Bauxiten. Symp ICSOBA Zagreb I, pp 201–225

  • Schroll E, Sauer D (1968) Beitrag zur Geochemie von Ti, Cr, Ni Co, V, and Mo in bauxitischen Gestermen und Problem der stofflichen Herkunft des aluminiums. Travaux du icsoba 5:83–96

    Google Scholar 

  • Schultz LG (1964) Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. Professional Paper US Geological Survey, Washington DC, USA, pp 1–31

  • Scotese CR (2014) Atlas of Jurassic paleogeographic maps, PALEOMAP Atlas for ArcGIS; The Jurassic, Maps 32–42, Mollweide projection, vol 4. PALEOMAP project, Evanston, IL, USA

  • Şengör AMC, Atayman S (2009) The Permian Extinction and the Tethys: an exercise in global geology. Geol Soc Am Spec Pap 448:1–96

    Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan. Gov Pak Ministry of Petroleum and Natural Resources Geological Survey of Pakistan, Islamabad

  • Sharifi Noorian M, Rahimzadeh F, Ehsanbakhsh M (1991) Bauxite deposits related to the Tethyan Basins in Iran. In: Tethyan Bauxites, IGCP-287 part II. Acta Geologica Hungarica, vol 34(4), pp 413–426

  • Sinkovec B, Sakac K (1991) Bauxite deposits of Yugoslavia: the state of the art. Acta Geol Hung 34(4):307–316

    Google Scholar 

  • Stampfli GM, (2000) Tethyan oceans. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surroundings area. Geological Society London special paper, vol 173, pp 1–23

  • Stampfli G, Marcoux J, Baud A (1991) Tethyan margins in space and time. Palaeogeogr Palaeoclim Palaeoecol 87:373–409

    Article  Google Scholar 

  • Steiner TMC, Gawlick HJ, Melcher F, Schlagintweit F (2021) Ophiolite derived material as parent rocks for late Jurassic bauxite: evidence for Tithonian unroofing in the Northern Calcareous Alps (Eastern Alps, Austria). Int J Earth Sci 110(5):1847–1862. https://doi.org/10.1007/s00531-021-02044-6

    Article  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 196:1273–1285

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton

    Google Scholar 

  • Torró L, Proenza JA, Aiglsperger T, Bover-Arnal T, Villanova-de- Benavent C, Rodríguez-García D, Ramírez A, Rodríguez J, Mosquea LA, Salas R (2017) Geological, geochemical, and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geol Rev 89:114–131. https://doi.org/10.1016/j.oregeorev.2017.06.017

    Article  Google Scholar 

  • Trolard F, Tardy Y (1989) A model of Fe3+-kaolinite, Al3+-goethite, Al3+-hematite equilibria in laterites. Clay Miner 24:1–21. https://doi.org/10.1180/claymin.1989.024.1.01

    Article  Google Scholar 

  • Vadasz E (1951) Bauxitodtan (bauxite geology). Akademiai Kiado, Budapest

    Google Scholar 

  • Valeton I (1972) Bauxites: developments in soil science, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Van Langeveld AD, Van der Gaast SJ, Eisma DA (1978) A comparison of the effectiveness of eight methods for the removal of organic matter from clay. Clays Clay Miner 26:361–364. https://doi.org/10.1346/CCMN.1978.0260507

    Article  Google Scholar 

  • Viers J, Wasserburg GJ (2004) Behavior of Sm and Nd in a lateritic soil profile. Geochim Cosmochim Acta 68(9):2043–2054. https://doi.org/10.1016/j.gca.2003.10.034

    Article  Google Scholar 

  • von Rad U, Exon NF, Boyd R, Haq BU (1992) Mesozoic paleoenvironment of the rifted margin off NW Australia (ODP Legs 122/123). In: Duncan RA, Rea DK, Kidd RB, von Rad U, Weissel JK (eds) American geophysical union monograph, vol 70. American Geophysical Union, Washington, pp 157–184. https://doi.org/10.1029/GM070p0157

  • Wan B, Chu Y, Chen L, Liang XF, Zhang ZY, Ao SJ, Talebian M (2021) Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: evidence from an Iranian segment of Gondwana. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2021.103788

    Article  Google Scholar 

  • Wang QF, Deng J, Zhang QZ, Liu H, Liu XF, Wan L, Li N, Wang YR, Jiang CZ, Feng YW (2011) Orebody vertical structure and implications for ore forming processes in the Xinxu bauxite deposit, Western Guangxi, China. Ore Geol Rev 39:230–244. https://doi.org/10.1016/j.oregeorev.2011.02.004

    Article  Google Scholar 

  • Wertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clay Clay Miner 31:277–284. https://doi.org/10.1346/CCMN.1983.0310405

    Article  Google Scholar 

  • Wiesmayr G, Grasemann B (2002) Eohimalayan fold and thrust belt: implications for the geodynamic evolution of the NW-Himalaya (India). Tectonics 21(6):8–1. https://doi.org/10.1029/2002TC001363

    Article  Google Scholar 

  • Wopfner H (1993) Pangean depositional sequences between Karoo and Lut. In: Balkema AA, Thorweihe U, Schandelmeier H (eds) Geoscientific research in Northeast Africa. Brookfield, Rotterdam, pp 189–195

    Google Scholar 

  • Xiao J, Li Y, Yang H, Xu J, Huang M (2021) Geochemistry of the Yudong bauxite deposit, south-eastern Guizhou, China: implications for conditions of formation and parental affinity. J Geochem Explor 220:106676. https://doi.org/10.1016/j.gexplo.2020.106676

    Article  Google Scholar 

  • Yang SH, Huang Y, Wang Q, Deng J, Liu X, Wang J (2019) Mineralogical and geochemical features of karst bauxites from Poci (western Henan, China), implications for parental affinity and bauxitization. Ore Geol Rev 105:295–309. https://doi.org/10.1016/j.oregeorev.2018.12.028

    Article  Google Scholar 

  • Yang S, Wang Q, Liu X, Kan Z, Santosh M, Deng J (2022) Global spatio-temporal variations and metallogenic diversity of karst bauxites and their tectonic, paleogeographic and paleoclimatic relationship with the Tethyan realm evolution. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2022.104184

    Article  Google Scholar 

  • Yeats RS, Hussain A (1987) Timing of structural events in the Himalayan foothills of northwestern Pakistan. GSA Bull 99(2):161–176

    Article  Google Scholar 

  • Yu W, Ruihu W, Qilian Z, Yuansheng D, Yue C, Yuping L (2014) Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: from the original Permian orebody to a Quaternary Salento-type deposit. J Geochem Explor 146:75–88. https://doi.org/10.1016/j.gexplo.2014.07.020

    Article  Google Scholar 

  • Zajzon N, Kristály F, Pálfy J, Németh T (2012) Detailed clay mineralogy of the Triassic–Jurassic boundary section at Kendlbachgraben (northern Calcareous Alps, Austria). Clay Miner 47(2):177–189. https://doi.org/10.1180/claymin.2012.047.2.03

    Article  Google Scholar 

  • Zamanian H, Ahmadnejad F, Zarasvandi A (2016) Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Chem Erde Geochem 76:13–37. https://doi.org/10.1016/j.chemer.2015.10.001

    Article  Google Scholar 

  • Zarasvandi A, Carranza EJM, Ellahi SS (2012) Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran. Ore Geol Rev 48:125–233. https://doi.org/10.1016/j.oregeorev.2012.02.010

    Article  Google Scholar 

  • Zhao L, Liu X (2019) Metallogenic and tectonic implications of detrital zircon U–Pb, Hf isotopes, and detrital rutile geochemistry of late carboniferous karstic bauxite on the southern margin of the North China Craton. Lithos 350–351:105222. https://doi.org/10.1016/j.lithos.2019.105222

    Article  Google Scholar 

  • Zhao LH, Liu XF, Yang SJ, Ma XL, Liu L, Sun XF (2021) Regional multi-sources of Carboniferous karstic bauxite deposits in North China Craton: insights from multiproxy provenance systems. Sediment Geol 421:105958. https://doi.org/10.1016/j.sedgeo.2021.105958

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mukhtiar Ghani, Hafiz Shahid Hussain, and Irfanullah Jan for their help during the fieldwork. Dr Susanne Gier helped in the XRD and clay mineralogy. Comments of Dr Andrea Mindszenty and Dr Hans-Jürgen Gawlick during the review process significantly improved the quality of the manuscript.

Funding

This research was funded by UNESCO-IUGS projects IGCP-661 and IGCP-710 related grant funded by the Austrian Academy of Science (ÖAW) “Non-marine–marine correlation and sea-level changes in the Mid-Jurassic Tethys: Tectonic versus climate events” (04/2022-03/2024).

Author information

Authors and Affiliations

Authors

Contributions

SI: conceptualisation, methodology, fieldwork, sample collection, investigation, writing—original draft, editing, review. MB: investigation, data curation, figures, software. MW: conceptualisation, visualisation, project administration, methodology, funding acquisition, resources, validation, editing.

Corresponding author

Correspondence to Shahid Iqbal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Bibi, M. & Wagreich, M. Geochemistry of the Triassic–Jurassic lateritic bauxites of the Salt Range: implications for eastward extension of the Tethyan bauxite deposits into Pakistan. Int J Earth Sci (Geol Rundsch) 112, 1527–1552 (2023). https://doi.org/10.1007/s00531-023-02310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02310-9

Keywords

Navigation