Skip to main content

Advertisement

Log in

Age and petrogenesis of scapolite gabbro from the Bambuy intrusion (Vitim plateau, Russia) and their tectonic significance

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Gabbroid intrusions within the Vitim alkaline province (some 100 km east of Lake Baikal, Russia) are scarce and occur as rather small bodies. History of their formation and evolution, as well as their link with alkaline and acidic magmatism, are not fully understood. To shed light on these research issues, geochronological, mineralogical, petro-geochemical, and isotopic (Sr, Nd, Pb, O) studies of scapolite, scapolite-bearing, and garnet-bearing gabbro of the Bambuy intrusion were carried out. It was deduced for the first time that there are two types of scapolite in the rocks. The first type appears to be a sodium meionite enriched in SO3, Cl, and CO2, which likely originated during the magmatic stage. The second type, on the other hand, is scapolite of meionite composition (rich in CO2) and occurs in the contact zone of the Bambuy intrusion and its host rocks. U–Pb isotopic dating of zircons from gabbro limits the age of the intrusion to 270 ± 1 Ma. The Bambuy intrusion formed later in time than the alkaline and acidic rocks (315–280 Ma) in this region. Gabbroids are characterized by: enrichment in large-ionic lithophilic elements (LILE) and negative Ta-Nb and Ti anomalies on the primitive mantle-normalized spectra, negative values of eNd (t) (ranging from −9.17 to −9.33), isotope-heavy values of δ18 O v-SMOW (+7.0… +11.6%), and Sr (I) of 0.70754–0.70756. All these geochemical characteristics imply that the Bambuy rocks originated from sources of lithospheric mantle modified by subducted material. Subsequently, the basic melt interacted with sedimentary carbonate strata which led to the formation of scapolite in the gabbro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

taken from Pearce (2008) and Peltonen (1995), the IOC (igneous oceanic crust) and SED (slab sediment) components are taken from Kimura et al. (2016), the lower crust (LC) and upper crust (UC) are from Rudnick and Gao (2003), the Late Palaeozoic granite of Angara-Vitim batholith (Barguzin suite (AVB)) from Litvinovsky et al. (2011). The field of the mafic rocks in the CAOB is after Yarmolyuk et al. (2000); the field of mafic rocks of the Transbaikalia (PZ3) is after Khubanov (2009), Jahn et al. (2009) and Litvinovsky et al. (2011); the field of the CAOB basalts (PZ3-MZ1) is after Yarmolyuk et al. (1997, 2000), Kozlovsky et al. (2006); Mafic dykes of the south Baikal area is after Gladkochub et al. (2010)

Similar content being viewed by others

References

  • Almeida KMF, Jenkins DM (2017) Stability field of the Cl-rich scapolite marialite. Am Mineral 102:2484–2493

    Article  Google Scholar 

  • Almeida KMF, Jenkins DM (2019) A comparison between the stability fields of a Cl-rich scapolite and the end-member marialite. Am Mineral 104:1788–1799

    Article  Google Scholar 

  • Andreev GV, Sharakshinov AO, Litvinovsky BA (1969) Intrusions of nepheline syenites, West Transbaikalia. Nauka, Moscow (In Russian)

  • Berzin NA, Dobretsov NL (1993) Geodynamic evolution of Southern Siberia in Late Precambrian-Early Paleozoic time. In: Coleman RG (ed) Reconstruction of the Paleo-Asian ocean. VSP International Sciences Publishers, Utrecht, pp 45–62

    Google Scholar 

  • Berzin NA, Kolman RG, Dobretsov NL, Zonenshain LP, Xiao X, Chang EZ (1994) Geodynamic map of the western part of the Paleoasian Ocean. Russ Geol Geophys 35:8–28

    Google Scholar 

  • Burmakina GN, Tsygankov AA, Khubanov VB (2018) Petrogenesis of composite dikes in granitoids of western Transbaikalia. Russ Geol Geophys 59:19–40

    Article  Google Scholar 

  • Buslov MM, Fujiwara Y, Imata K, Semakov NN (2004) Late Paleozoic-Early Mesozoic geodynamics in Central Asia. Gondwana Res 7:791–808

    Article  Google Scholar 

  • Carter LB, Dasgupta R (2015) Hydrous basalt–limestone interaction at crustal conditions: implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth Planet Sci Lett 427:202–214

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Didenko AN, Mossakovsky AA, Pechersky DM, Ruzhentsev SV, Samygin SG, Kheraskova TN (1994) Geodynamics of the Paleozoic oceans of Central Asia. Russ Geol Geophys 35:59–75

    Google Scholar 

  • Donskaya TV, Gladkochub DP, Mazukabzov AM, Ivanov AV (2013) Late Paleozoic – Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J Asian Earth Sci 62:79–97

    Article  Google Scholar 

  • Dorendorf F, Wiechert U, Wörner G (2000) Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia. Earth Planet Sci Lett 175:69–86

    Article  Google Scholar 

  • Doroshkevich AG, Ripp GS, Sergeev SA (2012a) U-Pb (SHRIMP-II) isotope dating of zircons from alkali rocks of Vitim province, West Transbaikalia. Dokl Earth Sci 443:297–301

    Article  Google Scholar 

  • Doroshkevich AG, Ripp GS, Sergeev SA, Konopelko DL (2012) The U-Pb geochronology of the Mukhal alkaline massif (western Transbaikalia). Russ Geol Geophys 53:169–174

    Article  Google Scholar 

  • Doroshkevich AG, Ripp GS, Izbrodin IA, Sergeev SA, Travin AV (2014) Geochronology of the Gulkhen Massif, Vitim alkali province, Western Transbaikalia. Dokl Earth Sci 457:940–944

    Article  Google Scholar 

  • Doroshkevich AG, Izbrodin IA, Rampilov MO, Ripp GS, Lastochkin EI, Khubanov VB (2018) Permo-Triassic stage of alkaline magmatism in the Vitim plateau (western Transbaikalia). Russ Geol Geophys 59:1061–1077

    Article  Google Scholar 

  • Doroshkevich AG (2013) Petrology of carbonatite and carbonate-containing alkaline complexes in Western Transbaikalia. Dissertation, GIN SB RAS (in Russian)

  • Dumańska-Słowik M, Powoly T, Khac G, Heflik W, Sikorska-Jaworowska M (2020) Petrogenesis of scapolite-rich gabbro from the alkaline Cho Don complex in northeastern Vietnam - mineralogical and geochemical implications. Lithos 374–375:105703

    Article  Google Scholar 

  • Evans BW, Shaw DM, Haughton DR (1969) Scapolite stoichiometry. Contrib Miner Petr 24:293–305

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48:237–262

    Article  Google Scholar 

  • Gajdošová M, Huraiová M, Hurai V, Slobodník M, Siegfried PR (2019) Two types of scapolite in Evate carbonatite deposit (Mozambique): implications for magmatic versus metamorphic origins. Act Geol Slov 11:63–74

    Google Scholar 

  • Gladkochub DP, Donskaya TV, Ivanov AV, Ernst R, Mazukabzov AM, Pisarevsky SA, Ukhova NA (2010) Phanerozoic mafic magmatism in the southern Siberian craton: geodynamic implications. Russ Geol Geophys 51:952–964

    Article  Google Scholar 

  • Goff F, Arney BY, Eddy AC (1982) Scapolite phenocrysts in a latite dome, Northwest Arizona, U.S.A. Earth Planet Sci Lett 60:86–92

    Article  Google Scholar 

  • Goldsmith JR, Newton RC (1977) Scapolite-plagioclase stability relations at high pressures and temperatures in system NaAlSi3O8-CaAl2Si2O8-CaCO3-CaSO4. Am Mineral 62:1063–1081

    Google Scholar 

  • Gordienko IV, Andreev GV, Kuznetsov AN (1978) Paleozoic magmatic formations in the Sayan-Baikal Mountainous Area. Nauka, Moscow (in Russian)

    Google Scholar 

  • Hassan I, Buseck PR (1988) HRTEM characterization of scapolite solid solutions. Am Mineral 73:119–134

    Google Scholar 

  • Hawthorne FC, Sokolova E (2008) The crystal chemistry of the scapolite-group minerals. II. The origin of the /4/,→P42/n phase transition and the nonlinear variations in chemical composition. Can Miner 46:1555–1575

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Article  Google Scholar 

  • Izbrodin IA, Doroshkevich AG, Rampilov MO, Ripp GS, Lastochkin EI, Khubanov VB, Posokhov VF, Vladykin NV (2017) Age and mineralogical and geochemical parameters of rocks of the China alkaline massif (western Transbaikalia). Russ Geol Geophys 58:903–921

    Article  Google Scholar 

  • Izbrodin IA, Doroshkevich AG, Rampilov MO, Elbaev AL, Ripp GS (2020) Late Paleozoic alkaline magmatism in Western Transbaikalia, Russia: implications for magma sources and tectonic settings. Geosci Front 11:1289–1303

    Article  Google Scholar 

  • Izokh AE, Gibsher AS, Zhuravlev DZ, Balykin PA (1998) Sm-Nd dating of the ultramafic-mafic massifs of the Eastern Branch of the Baikal-Muya Ophiolite Belt. Dokl Earth Sci 360:525–529

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans R Soc Edinb Earth Sci 91:181–193

    Google Scholar 

  • Jahn BM, Capdevila R, Liu D, Vernov A, Badarch G (2004) Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulan Baator, Mongolia: geochemical and Nd isotopic evidence, and implications of Phanerozoic crustal growth. J Asian Earth Sci 23:629–653

    Article  Google Scholar 

  • Jahn BM, Litvinovsky BA, Zanvilevich AN, Reichow M (2009) Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113:521–539

    Article  Google Scholar 

  • Javoy M, Fourcade S, Allegre CJ (1970) Graphical method for examination of 18O/16O fractionations in silicate rocks. Earth Planet Sci Lett 10:12–16

    Article  Google Scholar 

  • Khubanov VB, Buyantuev MD, Tsygankov AA (2016) U-Pb dating of zircons from PZ–MZ igneous complexes of Transbaikala by sector-field mass spectrometry with laser sam-pling: technique and comparison with SHRIMP. Russ Geol Geophys 57:241–258

    Article  Google Scholar 

  • Khubanov VB (2009) The bimodal dike belt in the central part of the Western Transbaikalia: Geological structure, age, composition and petrogenesis. Dissertation, GIN SB RAS

  • Kimura J-I, Gill JB, Skora S, van Keken PE, Kawabata H (2016) Origin of geochemical mantle components: role of subduction filter. Geochem Geophys Geosys 17:3289–3325

    Article  Google Scholar 

  • Konev AA (1982) Nepheline rocks of the Sayan-Baikal Mountainous Area. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Korinevsky VG, Korinevsky EV (2016) Unusual shape of pyrrhotite inclusions in scapolite of igneous rocks from the southernern Urals. Geol Ore Deposit 58:691–696

    Article  Google Scholar 

  • Kotov AB, Vladykin NV, Yarmolyuk VV, Sal’nikova EB, Sotnikova IA, Yakovleva SZ (2013) Permian age of the Burpala alkaline pluton, Northern Transbaikalia: geodynamic implications. Dokl Earth Sci 453:1082–1085

    Article  Google Scholar 

  • Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB, Larin AM (2004) Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J Asian Earth Sci 23:605–627

    Article  Google Scholar 

  • Kozlovsky AM, Yarmolyuk VV, Savatenkov VM, Kovach VP (2006) Sources of basaltoid magmas in rift settings of an active continental margin: example from the bimodal association of the Noen and Tost ranges of the Late Paleozoic Gobi-Tien Shan rift zone, southern Mongolia. Petrology 14:337–360

    Article  Google Scholar 

  • Kuzmin MI, Yarmolyuk VV, Kravchinsky VA (2010) Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth Sci Rev 102:29–59

    Article  Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. W. De Gruyter, Berlin

    Google Scholar 

  • Lastochkin EI, Ripp GS, Orsoev DA, Badmatsyrenova RA, Khubanov VB (2018) Assessment of the comagmaticity of gabbroids and syenites of the Arsentyevsky massif (Western Transbaikalia). Litosphere 18:566–573

    Article  Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Beny JM (2011) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Miner Petr 162:153–168

    Article  Google Scholar 

  • Litvinovsky BA (1967) On the role of magmatic replacement in the formation of nepheline syenites of the Bambuy intrusion (Vitim plateau). Russ Geol Geophys 3:123–128

    Google Scholar 

  • Litvinovsky BA (1973) New data on the conditions of the formation of sviatonosites (on the example of garnet syenites of the Bambuy intrusion, Vitim plateau). Russ Geol Geophys 1:42–51 (in Russian)

    Google Scholar 

  • Litvinovsky BA, Zanvilevich AN, Alakshin AM, Podladchikov YY (1993) Angara-Vitim Batholith: The Largest Granitoid Pluton. Izd-vo OIGGM SO RAN, Novosibirsk (in Russian)

    Google Scholar 

  • Litvinovsky BA, Jahn BM, Zanvilevich AN, Saunders A, Poulain S, Kuzmin DV, Reichow MK, Titov AV (2002) Petrogenesis of syenite–granite suite from Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chem Geol 89:105–133

    Article  Google Scholar 

  • Litvinovsky BA, Tsygankov AA, Jahn BM, Katzir Y, Beeri-Shlevin Y (2011) Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 125:845–874

    Article  Google Scholar 

  • Locock AJ (2008) An Excel spreadsheet to recast analysis of garnet to end members components, and a synopsis of crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

    Article  Google Scholar 

  • Mazhari SA, Amini S, Ghalamghash J, Bea F (2011) Metasomatic stages and scapolitization effects on chemical composition of Pasveh pluton. NW Iran J Earth Sci 22:619–631

    Article  Google Scholar 

  • Mazukabzov AM, Donskaya TV, Gladkochub DP, Paderin IP (2010) The Late Paleozoic geodynamics of the West Transbaikalian segment of the Central Asian fold belt. Russ Geol Geophys 51:482–491

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Metelkin DV, Vernikovsky VA, Kazansky AYu (2012) Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions. Russ Geol Geophys 53:675–688

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Newton RC, Goldsmith JR (1975) Stability of the scapolite meionite (3CaAl2Si2O8·CaCO3) at high pressure and storage of CO2 in the deep crust. Contrib Miner Petr 49:49–62

    Article  Google Scholar 

  • Owen JV, Greenough JD (1999) Scapolite pegmatite from the Minas Fault, Nova Scotia: tangible manifestation of carboniferous, evaporite-derived hydrothermal fluids in the western cobequid highlands? Min Mag 63:387–397

    Article  Google Scholar 

  • Parfenov LM, Berzin NA, Khanchuk AI, Badarch G, Belichenko VG, Bulgatov AN, Dril SI, Kirillova GL, Kuzmin MI, Nokleberg U, Prokopiev AV, Timofeev VF, Tomurtoo O, Yan H (2003) Model of the formation of orogenic belts in Central and North-East Asia. Russ J Pac Geol 6:7–41

    Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Peccerillo A (2017) Cenozoic volcanism in the Tyrrhenian Sea Region. IAVCEI, Advances in volcanology, 2nd edn. Berlin, Springer

    Book  Google Scholar 

  • Peltonen P (1995) Petrogenesis of ultramafic rocks in the Vammala Nickel Belt: Implications for crustal evolution of the early Proterozoic Svecofennian arc terrane. Lithos 34:253–274

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Rytsk EYu, Neimark LA, Amelin YuV (1998) Paleozoic granitoids in the northern part of the Baikalian orogenic area: age and past geodynamic settings. Geotectonics 32:379–393

    Google Scholar 

  • Rytsk EY, Kovach VP, Yarmolyuk VV, Kovalenko VI, Bogomolov ES, Kotov AB (2011) Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Fold belt. Geotectonics 45:349–377

    Article  Google Scholar 

  • Rytsk EYu, Velikoslavinskii SA, Smyslov AB, Kotov VA, Glebovitskii ES, Bogomolov EV, Tolmacheva VP, Kovach VP (2017) Geochemical peculiarities and sources of Late Paleozoic high-K and ultrapotassic syenite of the Synnyr and Tas massifs (Eastern Siberia). Dokl Earth Sci 476:1043–1047

    Article  Google Scholar 

  • Saunders AD, Norry MJ, Tarney J (1988) Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J Petrol 1:415–445

    Article  Google Scholar 

  • Savatenkov VM, Morozova IM, Levskii LK (2004) Behavior of the Sm–Nd, Rb– Sr, K-Ar, and U–Pb Isotopic systems during alkaline metasomatism: Fenites in the outer contact zone of an ultramafic alkaline intrusion. Geochem Inter 42:899–920

    Google Scholar 

  • Savatenkov VM, Yarmolyuk VV, Kozlovsky AM, Smirnova ZB, Sviridova OE (2018) Nd and Pb isotopic composition of granitoids in the Khangai Batholith as an indicator of crust-forming processes in the terranes of the Central Asian Orogenic Belt. Petrology 26:351–367

    Article  Google Scholar 

  • Savatenkov VM, Rytsk EYu, Velikoslavinskii SD, Lebedeva YuM (2019) Isotope (Nd-Sr) features and possible sources of ultrapotassium alkaline rocks of the Synnyr massif (Northern Baikal region). Proc Fersmanov Sci Session GI KSC RAS 16:497–501 (in Russian)

    Google Scholar 

  • Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Sharakshinov AO (1984) Alkaline magmatism in the Vitim Upland. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Shenger AMJ, Natalyin BA, Burtman VS (1994) Tectonic evolution of the Altaids. Russ Geol Geophys 35:41–58

    Google Scholar 

  • Slama J, Koˇsler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Pleˇsovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Smith GC, Holness MB, Bunbury J (2008) Interstitial magmatic scapolite in glassbearing crystalline nodules from the Kula Volcanic Province, Western Turkey. Min Mag 72:1243–1259

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry MJ (Eds.), Magmatism in ocean basins. Geological Society of London Publications, Special Publication 42:313–345

  • Teertstra DK, Sherriff BL (1997) Substitutional mechanisms, compositional trends and the end-member formulae of scapolite. Chem Geol 136:233–260

    Article  Google Scholar 

  • Teertstra DK, Schindler M, Sherriff BL, Hawthorne FC (1999) Silvialite, a new sulphate-dominant member of the scapolite group with an Al-Si composition near the I4/mP42/n phase transition. Min Mag 63:321–329

    Article  Google Scholar 

  • Thuc DD, Trung H (1995) Geology of Vietnam: Vol 2-Magmatic Formations. Vietnam Department of Geology and Minerals, Hanoi, 213–219 (in Vietnamese with English abstract)

  • Tsygankov AA (2005) Magmatic evolution of the Baikal-Muya Volcanic-Plutonic Belt in the Late Precambrian. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Tsygankov AA (2014) Late Paleozoic granitoids in western Transbaikalia: sequence of formation, sources of magmas, and geodynamics. Russ Geol Geophys 55:153–176

    Article  Google Scholar 

  • Tsygankov AA, Matukov DI, Berezhnaya NG, Larionov AN, Posokhov VF, Tsyrenov BT, Khromov AA, Sergeev SA (2007) Late Paleozoic granitoids of western Transbaikalia: magma sources and stages of formation. Russ Geol Geophys 48:120–140

    Article  Google Scholar 

  • Tsygankov AA, Litvinovsky BA, Jahn BM, Reichow MK, Liu DY, Larionov AN, Presnyakov SL, Lepekhina YN, Sergeev SA (2010) Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data). Russ Geol Geophys 51:972–994

    Article  Google Scholar 

  • Tsygankov AA, Khubanov VB, Travin AV, Lepekhina EN, Burmakina GN, Antsiferova TN, Udoratina OV (2016) Late Paleozoic gabbroids of western Transbaikalia: U-Pb and Ar-Ar isotopic ages, composition, and petrogenesis. Russ Geol Geophys 57:790–808

    Article  Google Scholar 

  • Tsygankov AA, Burmakina GN, Khubanov VB, Buyantuev MD (2017) Geodynamics of Late Paleozoic batholith-forming processes in western Transbaikalia. Petrology 25:396–418

    Article  Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos 28:151–179

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) zircon. Mineralogical Society of Reviews In Mineralogy and Geochemistry, Washington

    Google Scholar 

  • Visser D, Nijland TG, Lieftink DJ, Maijer C (1999) The occurrence of preiswerkite in a tourmaline-biotite-scapolite rock from Blengsvatn, Norway. Am Min 84:977–982

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, van Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newslett 19:1–23

    Article  Google Scholar 

  • Wilhem C, Windley BF, Stampfli GM (2012) The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci Rev 113:303–341

    Article  Google Scholar 

  • Windley BF, Kroner A, Guo J, Qu G, Li Y, Zhang C (2002) Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. J Geol 110:719–739

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao WJ, Kroner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. Bicentennial Rev J Geol Soc 164:31–47

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S, Li JL (2009a) End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci 98:1189–1287

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Yuan C, Sun M, Han CM, Lin SF, Chen HL, Yan QR, Liu DY, Qin KZ, Li JL, Sun S (2009b) Paleozoic multiple subduction–accretion processes of the southern Altaids. Am J Sci 309:221–270

    Article  Google Scholar 

  • Xiao W, Windley BF, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H (2015) A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci 43:477–507

    Article  Google Scholar 

  • Yarmolyuk VV, Kovalenko VI (2003) Batholiths and geodynamics of batholith formation in the Central Asian fold belt. Russ Geol Geophys 12:1260–1274

    Google Scholar 

  • Yarmolyuk VV, Budnikov SV, Kovalenko VI, Antipin VS, Goreglyad AV, Salnikova EB, Kotov AB, Kozakov IK, Kovach VP, Yakovleva SZ, Berezhnaya NG (1997) Geochronology and geodynamic setting of the Angara-Vitim batholith. Petrology 5:401–414

    Google Scholar 

  • Yarmolyuk VV, Kovalenko VI, Kuzmin MI (2000) North Asian superplume activity in the Phanerozoic: magmatism and geodynamics. Geotectonics 34:343–366

    Google Scholar 

  • Zheng Y-F (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Tectonics of lithospheric plates in the territory of the USSR. Nedra, Moscow

    Google Scholar 

Download references

Acknowledgements

The research on the geological structure and mineralogy of the rocks of the Bambuy complex was carried out with the financial support of the GIN SB RAS (AAAA-A21-121011390002-2) and IGM SB RAS (FWZN-2022-0024), geochronological and geochemical studies of the rocks were carried out with the financial support of the Russian Science Foundation (RSF), project 22-17-00078. We are grateful to E.A. Khromova (EMPA analysis), O.V. Zarubina (ICP-MS analysis) for their outstanding analytical work. We would like to thank Magdalena Dumańska-Słowik and an anonymous reviewer for constructive criticism of the first version of the manuscript. Their comments and suggestions were very helpful and improved the quality of the article significantly. Oles Savchuk is thanked for help with the English language. The editorial work of Prof. Wolf-Christian Dullo is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Izbrodin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izbrodin, I., Doroshkevich, A., Rampilov, M. et al. Age and petrogenesis of scapolite gabbro from the Bambuy intrusion (Vitim plateau, Russia) and their tectonic significance. Int J Earth Sci (Geol Rundsch) 111, 1859–1883 (2022). https://doi.org/10.1007/s00531-022-02202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02202-4

Keywords

Navigation