Skip to main content
Log in

Composition and thermal evolution of the lithospheric mantle beneath the Ribeira Belt, SE Brazil: evidence from spinel peridotite xenoliths

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study reports the first geochemical and Pb isotopic data for mantle xenoliths from beneath the Neoproterozoic Ribeira Belt, southeastern Brazil. The cm-sized spinel peridotite xenoliths are hosted by a Cretaceous lamprophyre dike that intruded high-grade metamorphic rocks. Major- and trace-element compositions of the main minerals indicate that the xenoliths derive from a shallow fertile mantle that has undergone a low degree of melt extraction (2–9% partial melting). On the basis of modeled isochemical phase diagrams for lherzolites, pressure and temperature conditions are inferred to vary from 1300–1350 °C and 17–19 kbar (fertile composition) to 1330–1430 °C and 17–23 kbar (relatively depleted composition), which correspond to high geothermal gradients of 65–80 mW/m2. Temperatures of last equilibration calculated based on the average REE content of pyroxenes for the same lherzolite samples vary from 1233 ± 56 °C to 1085 ± 42 °C, while conventional thermometry (TBKN) yields average values of 807 and 755 °C, indicating re-equilibration at lower temperatures. Pb isotope ratios of clinopyroxene define a mixing line that intercepts the Stacey-Kramers two-stage terrestrial Pb evolution curve at ca. 200 Ma. Linear regressions yield two errorchrons of 56 ± 75 Ma and 571 ± 99 Ma (95% confidence level). These results combined with the ages and tectonic settings of host rocks are suggestive of an overprint of a younger tectono-thermal event, most likely related to the opening of the South Atlantic Ocean, over a mantle previously equilibrated during the Precambrian development of the Ribeira Belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Faleiros et al. (2016). b Simplified map of the plutonic complexes from the Serra do Mar region with the location of Ubatuba. Adapted from Azzone et al. (2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida VV, Janasi VA, Svisero DP, Nannini F (2014) Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism. Cent Eur J Geosci 6:614–632

    Google Scholar 

  • Almeida VV, Janasi VA, Heaman LM, Shaulis B, Hollanda MHBM, Renne PR (2018) Contemporaneous alkaline and tholeiitic magmatism in the Ponta Grossa Arch, Paraná-Etendeka Magmatic Province: constraints from precise U–Pb zircon/baddeleyite and 40Ar/39Ar phlogopite dating of the José Fernandes Gabbro and mafic dykes. J Volcanol Geoth Res 355:55–65

    Google Scholar 

  • Andrade S, Ulbrich HH, Gomes CB, Martins L (2014) Methodology for the determination of trace and minor elements in minerals and fused rock glasses with laser ablation associated with quadrupole inductively coupled plasma mass spectrometry (LA-Q-ICPMS). Am J Anal Chem 05:701–721

    Google Scholar 

  • Assumpção M, Guarido M, van der Lee S, Dourado JC (2011) Upper-mantle seismic anisotropy from SKS splitting in the South American stable platform: a test of astenospheric flow models beneath the lithosphere. Lithosphere 3:173–180

    Google Scholar 

  • Azzone RG, Munoz PM, Enrich GER, Alves A, Ruberti E, Gomes CB (2016) Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil. Lithos 260:58–75

    Google Scholar 

  • Azzone RG, Ruberti E, Silva JCL, Gomes CB, Rojas GEE, Hollanda MHBM, Tassinari CCG (2018) Upper Cretaceous weakly to strongly silica-undersaturated alkaline dike series of the Mantiqueira Range, Serra do Mar alkaline province: Crustal assimilation processes and mantle source signatures. Br J Geol 48:373–390

    Google Scholar 

  • Azzone RG, Chmyz L, Guarino V, Alves A, Gomes CB, Ruberti E (2020) Isotopic clues tracking the open-system evolution of the Ponte Nova mafic-ultramafic alkaline massif, SE Brazil: the contribution of Pb isotopes. Geochemistry 80:125648.

  • Baker J, Peate D, Waight T, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem Geol 211:275–303

    Google Scholar 

  • Bastin GF, van Loo FJJ, Heijiligers HJM (1984) Evaluation and use of Gaussian (Φ(pz)) curves in quantitative electron probe microanalysis: a new optimization. X-Ray Spectrom 13:91–97

    Google Scholar 

  • Bastow ID, Julia J, do Nascimento A, Fuck R, Buckthorp T, Mc-Clellan J, (2015) Upper mantle anisotropy of the Borborema Province, NE Brazil: implications for intra-plate deformation and sub-cratonic asthenospheric flow. Tectonophysics 657:81–93

    Google Scholar 

  • Beccaluva L, Bianchini G, Natali C, Siena F (2019) Plume-related Paraná-Etendeka Igneous Province: An evolution from plateau to continental rifting and breakup. Lithos 362–363:105484.

  • Bellieni G, Montes-Lauar CR, De Min A, Piccirillo EM, Cavazzini G, Melfi AJ, Pacca IG (1990) Early and Late Cretaceous magmatism from São Sebastião island (SE-Brazil): geochemistry and petrology. Geochim Br 4:59–83

    Google Scholar 

  • Brey GP, Koehler T (1990) Geothermobarometry in four-phase lherzolites II: New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Brito Neves BB, Campos Neto MC, Fuck RA (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African Cycle and orogenic collage. Episodes 22:155–166

    Google Scholar 

  • Brotzu P, Melluso L, D’Amelio F, Lustrino M (2005) Potassic dykes and intrusions of the Serra do Mar Igneous Province (SE Brazil). In: Comin-Chiaramonti P, Gomes CB (eds) Mesozoic to Cenozoic Alkaline Magmatism in the Brazillian Platform. Edusp-Fapesp, pp 443–472

  • Cabral Neto I, Nannini F, Silveira FV, Cunha LM (2017) Áreas kimberlíticas e diamantíferas do Estado de Minas Gerais: Informe de Recursos Minerais Complementar ao Mapa das Áreas Kimberlíticas e Diamantíferas do Estado de Minas Gerais e Regiões Adjacentes. Brasília, Serviço Geológico do Brasil, 230 p.

  • Campanha GAC, Basei MAS, Tassinari C, Nutman AP, Faleiros FM (2008) Constraining the age of Iporanga Formation with SHRIMP U-Pb zircon: implications for possible Ediacaran glaciation in the Ribeira Belt, SE Brazil. Gondwana Res 13:117–125

    Google Scholar 

  • Campanha GAC, Faleiros FM, Basei MAS, Tassinari CCG, Nutman AP, Vasconcelos PM (2015) Geochemistry and age of mafic rocks from the Votuverava Group, southern Ribeira Belt, Brazil: evidence for 1490 Ma oceanic back-arc magmatism. Precambrian Res 266:530–550

    Google Scholar 

  • Campanha GAC, Basei MAS, Faleiros FM, Nutman AP (2016) The Mesoproterozoic to Early Neoproterozoic passive margin Lajeado Group and Apiaí Gabbro, southeastern Brazil. Geosci Front 7:683–694

    Google Scholar 

  • Campanha GAC, Faleiros FM, Cawood PA, Cabrita DIG, Ribeiro BV, Basei MAS (2019) The Tonian Embu Complex in the Ribeira Belt (Brazil): revision, depositional age and setting in Rodinia and West Gondwana. Precambrian Res 320:31–45

    Google Scholar 

  • Canil D, O’Neill HStC, Pearson DG, Rudnick RL, McDonough WF, Carswell DA, (1994) Ferric iron in peridotites and mantle oxidation states. Earth Planet Sci Lett 123:205–220

    Google Scholar 

  • Carlson RW, Araújo ALN, Junqueira-Brod TC, Gaspar JC, Brod JA, Petrinovic IA, Hollanda MHBM, Pimentel MM, Sichel S (2007) Chemical and isotopic relationships between peridotites xenoliths and mafic-ultrapotassic rocks from Southern Brazil. Chem Geol 242(3–4):415–434

    Google Scholar 

  • Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petr 14:36–64

    Google Scholar 

  • Chen W, Simonetti A (2015) Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient depleted mantle reservoir. Lithos 216–217:81–92

    Google Scholar 

  • Cheng Z, Hou T, Keiding JK, Veksler IV, Kamenetsky VS, Hornschu M, Trumbull RB (2020) Comparative geothermometry in high-Mg magmas from the Etendeka Province and constraints on their mantle source. J Petrol 60(12):2509–2528

    Google Scholar 

  • Cherniak DJ (1998) Pb diffusion in clinopyroxene. Chem Geol 150(1–2):105–117

    Google Scholar 

  • Cherniak DJ (2001) Pb diffusion in Cr diopside, augite, and enstatite, and consideration of the dependence of cation diffusion in pyroxene on oxygen fugacity. Chem Geol 177:381–397

    Google Scholar 

  • Chmyz L, Arnaud N, Biondi JC, Azzone RG, Bosch D (2019) Hf-Pb isotope and trace element constraints on the origin of the Jacupiranga Complex (Brazil): Insights into carbonatite genesis and multi-stage metasomatism of the lithospheric mantle. Gondwana Res 71:16–27

    Google Scholar 

  • Coldebella B, Azzone RG, Chmyz L, Ruberti E, Svisero DP (2020) Oxygen fugacity of Alto Paranaíba kimberlites and diamond instability: Três Ranchos IV and Limeira I intrusions. Br J Geol 50(1):e20190087

  • Coltice N, Bertrand H, Rey P, Jourdan F, Phillips BR, Ricard Y (2009) Global warming of the mantle beneath continents back to the Archean. Gondwana Res 15:254–266

    Google Scholar 

  • Connolly JA (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Google Scholar 

  • Costa GV, Gaspar JC, Moraes R, Coelho-Silva ATM, Carreiro S (2008) Mantle xenoliths from Canastra-01 kimberlite, Brazil. In: 9th International Kimberlite Conference. Extended Abstract No. 9IKC-A-00330

  • Costa VS (2016) Mineralogia e petrologia de xenólitos mantélicos da província kimberlítica de Juína, MT. PhD thesis, Instituto de Geociências, Universidade de São Paulo

  • Cury LF, Kaulfuss GA, Siga Junior O, Basei MAS, Harara OMM, Sato K (2002) Idades U-Pb (zircões) de 1.75 Ga em granitóides alcalinos deformados dos núcleos Betara e Tigre: evidências de regimes extensionais do Estateriano na Faixa Apiaí. Geologia USP, Série Científica, São Paulo v2:95–108

  • Deckart K, Féraud G, Marques LS, Bertrand H (1998) New time constraints on dyke swarms related to the Paraná-Etendeka magmatic province, and subsequent South Atlantic opening, southeastern Brazil. J Volcanol Geoth Res 80(1–2):67–83

    Google Scholar 

  • Faleiros FM, Campanha GAC, Martins L, Valch SRF (2011) Ediacaran high-pressure collision metamorphism and tectonics of the southern Ribeira Belt (SE Brazil): Evidence for terrane accretion and dispersion during Gondwana assembly. Precambrian Res 189(3–4):263–291

    Google Scholar 

  • Faleiros FM, Campanha GAC, Silva MP, Almeida VV, Rodrigues SWO, Araújo BP (2016) Short-lived polyphase deformation during crustal thickening and exhumation of a collisional orogeny (Ribeira Belt, Brazil). J Struct Geol 93:106–130

    Google Scholar 

  • Felgate MR (2014) The petrogenesis of Brazilian kimberlites and kamafugites intruded along the 125º lineament: improved geochemical and geochronological constraints on magmatism in Rondonia and the Alto Paranaiba Igneous Province. PhD thesis, School of Earth Sciences, The University of Melbourne

  • Fernandes PR, Tommasi A, Vauchez A, Neves SP, Nannini F (2021) The São Francisco cratonic root beneath the Neoproterozoic Brasilia belt (Brazil): Petrophysical data from the kimberlite xenoliths. Tectonophysics 816:229011

  • Garda GM (1995) Os diques básicos e ultrabásicos da região costeira entre as cidades de São Sebastião e Ubatuba, estado de São Paulo. Instituto de Geociências, Universidade de São Paulo, Tese de doutorado

    Google Scholar 

  • Garda GM, Schorscher HD, Esperança S, Carlson RW (1995) The petrology and geochemistry of coastal dikes from São Paulo State, Brazil: implications for variable lithospheric contributions to alkaline magmas from the western margin of the South Atlantic. An Acad Bras Cienc 67:191–216

    Google Scholar 

  • Gomes CB, Ruberti E, Comin-Chiaramonti P, Azzone RG (2011) Alkaline magmatism in the Ponta Grossa Arch, SE Brazil: a review. J S Am Earth Sci 32:152–168

    Google Scholar 

  • Green DH, Ringwood AE (1967) The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet Sci Lett 3:151–160

    Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Google Scholar 

  • Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) Glitter: Data reduction software for laser ablation ICP-MS. In: Sylvester, P.J. (ed) Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Short Course 40. Vancouver, pp. 308–311

  • Guo P, Xu W-L, Wang C-G, Wang F, Ge W-C, Sorokin AA, Wang Z-W (2017) Age and evolution of the lithospheric mantle beneath the Khanka Massif: Geochemical and Re-Os isotopic evidence from Sviyagino mantle xenoliths. Lithos 282–283:326–338

    Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70

    Google Scholar 

  • Heaman L, Teixeira NA, Gobbo L, Gaspar JC (1998) U-Pb mantle zircon ages for kimberlites from the Juína and Paranatinga provinces. Brazil International Kimberlite Conference: Extended Abstracts 7(1):322–324

    Google Scholar 

  • Heilbron M, Valeriano CM (2020) Comments on Meira VT, Garcia-Casco A, Hyppolito T, Juliani C, Schorscher JHD (2019) Tectono metamorphic evolution of the Central Ribeira Belt, Brazil: a case of Late Neoproterozoic intracontinental orogeny and flow of partially molten deep crust during the assembly of West Gondwana. Tectonics 39:e2019TC005897

  • Heilbron M., Soares ACP, Campos Neto M, Silva LC, Trouw R, Janasi VA (2004) Província Mantiqueira. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, Brito Neves BB (org). Geologia do Continente Sul Americano: Evolução da Obra de Fernando Flávio Marques de Almeida, 1st edn. São Paulo: Beca Produções Culturais Ltda., I:203–234

  • Heilbron M, Ribeiro A, Valeriano CM, Paciullo F, Almeida JCH, Trouw R, Tupinambá M, Silva LGE (2017) The Ribeira Belt. In: Heilbron M, Cordani U, Alkimim FF (org). São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent, 1st edn. Springer, 1:277–304

  • Heilbron M, Valeriano CM, Peixoto C, Tupinambá M, Neubauer F, Dussin I, Corrales F, Bruno H, Lobato M, Almeida JCH, Silva LGE (2020) Neoproterozoic magmatic arc systems of the central Ribeira Belt, SE Brazil, in the context of the West Gondwana pre-collisional history: a review. J S Am Earth Sci 103:102710

  • Hellebrand E, Snow JE, Mostefaoui HP (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petrol 150:486–504

    Google Scholar 

  • Henrique-Pinto R, Janasi VA, Vasconcellos ACBC, Sawyer EW, Barnes SJ, Basei MAS, Tassinari CCG (2015) Zircon provenance in meta-sandstones of the São Roque Domain: implications for the Proterozoic evolution of the Ribeira Belt, SE Brazil. Precambrian Res 256:271–288

    Google Scholar 

  • Heron PJ (2018) Mantle plumes and mantle dynamics in the Wilson cycle. Geological Society, London, Special Publications 470(1):87–103

    Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Google Scholar 

  • Holland TJB, Green ECR, Powell R (2018) Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J Petrol 59:881–900. https://doi.org/10.1093/petrology/egy048

    Article  Google Scholar 

  • Hunt L, Stachel T, Morton R, Grütter H, Creaser RA (2009) The Carolina kimberlite, Brazil – Insights into an unconventional diamond deposit. Lithos 112(2):843–851

    Google Scholar 

  • Hunt L, Stachel T, Grütter H, Armstrong J, McCandless TE, Simonetti A, Tappe S (2012) Small mantle fragments from the Renard kimberlites, Quebec: Powerful recorders of mantle lithosphere formation and modification beneath the Eastern Superior Craton. J Petrol 53(8):1597–1635

    Google Scholar 

  • Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48:317–336

    Google Scholar 

  • Janasi VA, Leite RJ, Van Schmus WR (2001) U-Pb ages and chronostratigraphy of the granitic magmatism in the Agudos Grandes batholith (W of Sao Paulo, Brazil)- implications for the evolution of the Ribeira Belt. J S Am Earth Sci 14(4):363–376

    Google Scholar 

  • Janasi VA, Freitas VA, Heaman LH (2011) The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth Planet Sci Lett 302:147–153

    Google Scholar 

  • Jennings ES, Holland TJB (2015) A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J Petrol 56:869–892

    Google Scholar 

  • Jennings ES, Holland TJB, Shorttle O, Maclennan J, Gibson SA (2016) The composition of melts from a heterogeneous mantle and the origin of ferropicrite: application of a thermodynamic model. J Petrol 57:2289–2310

    Google Scholar 

  • Kaminsky FV, Sablukov SM, Belousova EA, Andreazza P, Tremblay M, Griffin WL (2010) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos 114:16–29

    Google Scholar 

  • Kesson SE, Ringwood AE (1989) Slab-mantle interactions: 2. The formation of diamonds. Chem Geol 78(2), 97–118.Lamotte DF, Fourdan B, Leleu S, Leparmentier F, Clarens P (2015) Style of rifting and the stages of Pangea breakup. Tectonics 34:1009–1029

    Google Scholar 

  • Leonardos OH, Carvalho JB, Tallarico FHB, Gibson SA, Thompson RN, Meyer HOA, Dickin AP (1993) O xenólito de granada Iherzolito de Três Ranchos 4: uma rocha matriz do diamante na província magmática cretacea do Alto Paranaíba. In: I Simpósio de Geologia do Diamante, 1, Cuiabá. Annals, p. 3–16

  • Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260

    Google Scholar 

  • Liu S, Tommasi A, Vauchez A, Mazzucchelli M (2019) Crust-mantle coupling during continental convergence and break-up: constraints from peridotite xenoliths from the Borborema Province, northeast Brazil. Tectonophysics 766:249–269

    Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Meira VT, García-Casco A, Juliani C, Almeida RP, Schorscher JHD (2015) The role of intracontinental deformation in supercontinent assembly: insights from the Ribeira Belt, southeastern Brazil (Neoproterozoic West Gondwana). Terra Nova 27(3):206–217

    Google Scholar 

  • Mercier J (1980) Single-pyroxene thermobarometry. Tectonophysics 70:1–37

    Google Scholar 

  • Nannini F (2016) Geologia e petrologia de xenólitos mantélicos da Província Ígnea do Alto Paranaíba, Minas Gerais. PhD thesis, Instituto de Geociências, Universidade de São Paulo

  • Ngonge ED, Hollanda MHBM, Pimentel MM, Oliveira DC (2016) Petrogenesis of the alkaline rocks of the Macau volcanic field, NE Brazil. Lithos 266–267:453–470

    Google Scholar 

  • Ngonge ED, Hollanda MHBM, Puchtel IS, Walker RJ, Archanjo CJ (2019) Characteristics of the lithospheric mantle beneath northeastern Borborema Province, Brazil: Re-Os and HSE constraints on peridotite xenoliths. J S Am Earth Sci 96:102371

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255

    Google Scholar 

  • Palin RM, Weller OM, Waters DJ, Dyck B (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7(4):591–607

    Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2014) 3.5 — mantle samples included in volcanic rocks: xenoliths and diamonds. In: Holland HD, Turekian KK (eds). Treatise on Geochemistry Elsevier, 2nd edn. Oxford,169–253

  • Powell R, Holland TJB (1994) Optimal Geothermometry and Geobarometry Am Mineral 79:120–133

    Google Scholar 

  • Raposo MIB (2017) Magnetic fabrics of the Cretaceous dike swarms from São Paulo coastline (SE Brazil): Its relationship with South Atlantic Ocean opening. Tectonophysics 721:395–414

    Google Scholar 

  • Regelous M (1993) Geochemistry of dolerites from the Paraná flood basalt province, southern Brazil. Unpublished PhD thesis, Open University

  • Ricardo BS. Faleiros FM, Moraes R, Siga Junior O, Campanha GAC (2020) Tectonic implications of juxtaposed high- and low-pressure metamorphic field gradient rocks in the Turvo-Cajati Formation, Curitiba Terrane, Ribeira Belt, Brazil. Precambrian Res 345:105766

  • Rivalenti G, Mazzucchelli M, Girardi VAV, Vannucci R, Barbieri MA, Zanetti A, Goldstein SL (2000) Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: evidence from mantle xenoliths. Contrib Mineral Petrol 138:308–325

    Google Scholar 

  • Rocha MP, Schimmel M, Assumpção M (2011) Upper-mantle seismic structure beneath SE and Central Brazil from P- and S-wave regional traveltime tomography. Geophys J Int 184:268–286

    Google Scholar 

  • Schmidberger SS, Simonetti A, Heaman LM, Creaser RA, Whiteford S (2007) Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet Sci Lett 254:55–68

    Google Scholar 

  • Siga Junior O (1995) Domínios tectônicos do sudeste do Paraná e nordeste de Santa Catarina: geocronologia e evolução crustal. PhD thesis, Instituto de Geociências, Universidade de São Paulo. 212 p

  • Simakov S, Dolivo-Dobrovolsky M (2009) PTQuick. Versions 1.4.0.5 (PTQuick.exe), 1.4.0.12 (PTools.dll), http://dimadd.ru/en/Programs/ptquick

  • Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48(3):589–625

    Google Scholar 

  • Smart KA, Chacko T, Simonetti A, Sharp ZD, Heaman LM (2014) A record of paleoproterozoic subduction preserved in the Northern Slave Cratonic Mantle: Sr-Pb-O isotope and trace-element investigations of eclogite xenoliths from the Jericho and Muskox kimberlites. J Petrol 55:549–583

    Google Scholar 

  • Smart KA, Tappe S, Simonetti A, Simonetti SS, Woodland AB, Harris C (2017) Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. Chem Geol 455:98–119

    Google Scholar 

  • Smith CB (1983) Pb, Sr and Nd isotopic evidence for sources of Southern African Cretaceous Kimberlites. Nature 304(5921):51–54

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope Evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, London, 42:313–345

  • Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106

    Google Scholar 

  • Thompson RN, Gibson SA, Mitchell JG, Dickin AP, Leonardos OH, Brod JA, Greenwood JC (1998) Migrating Cretaceous-Eocene magmatism in the Serra do Mar Alkaline Province, SE Brazil: Melts from the deflected Trindade mantle plume? J Petrol 39:1493–1526

    Google Scholar 

  • Tommasi A, Vauchez A (2015) Heterogeneity and anisotropy in the lithospheric mantle. Tectonophysics 661:11–37

    Google Scholar 

  • Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the Earth´s mantle. Tectonophysics 558–559:1–27

    Google Scholar 

  • Vicentini CM (2015) Caracterização geoquímica e isotópica (Sr-Nd-Pb) dos litotipos subalcalinos diferenciados do enxame da Serra do Mar. Instituto de Astronomia, Geofísica e Ciências Atmosféricas. Universidade de São Paulo, Dissertação de Mestrado, p 94

    Google Scholar 

  • Wang C, Liang Y, Xu W (2015) On the significance of temperatures derived from major element and REE based two-pyroxene thermometers for mantle xenoliths from the North China Craton. Lithos 224–225:101–113

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petr 62:129–139

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Zhang H, Zheng J, Pan S, Lu J, Li Y, Xiang L, Lin A (2017) Compositions and processes of lithospheric mantle beneath the west Cathaysia block, southeast China. Lithos 286–287:241–251

    Google Scholar 

  • Ziberna L, Klemme S (2016) Application of thermodynamic modelling to natural mantle xenoliths: examples of density variations and pressure–temperature evolution of the lithospheric mantle. Contrib Mineral Petr 171:16

    Google Scholar 

  • Ziberna L, Klemme S, Nimis P (2013) Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling. Contrib Mineral Petr 166:411–421. https://doi.org/10.1007/s00410-013-0882-5

    Article  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by Grants 2006/01925-4, 2007/00635-5, 2018/10012-0, and 2019/22084-8, São Paulo Research Foundation (FAPESP). VAJ, FMF, and RM thank the research productivity scholarship Grants 306102/2019-6, 307732/2019-3, and 305720/2020-1, respectively, and National Council of Technological and Scientific Development (CNPq). We thank Maria Irene Bartolomeu Raposo for the whole-rock compositional data of the lamprophyre dike. The paper was substantially improved following detailed comments and suggestions by Katie Smart and Gerhard Peter Brey. We thank Editor Wolf-Christian Dullo for his guidance during the editorial process.

Funding

The present study was financially supported by Grants 2006/01925–4, 2007/00635–5, 2018/10012–0, and 2019/22084–8, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

VVA—conceptualization, methodology, investigation, and writing; VAJ—conceptualization, methodology, investigation, and writing; FMF—conceptualization, methodology, investigation, and writing; AS—methodology, investigation, and writing; RM—investigation and writing.

Corresponding author

Correspondence to Vidyã Vieira Almeida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Availability of data and materials

The results of mineral electron microprobe analyses, trace elements in minerals by LA-ICP-MS, and Pb isotopes in clinopyroxene are available in this article and in its Supplementary file.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, V.V., de Assis Janasi, V., Faleiros, F.M. et al. Composition and thermal evolution of the lithospheric mantle beneath the Ribeira Belt, SE Brazil: evidence from spinel peridotite xenoliths. Int J Earth Sci (Geol Rundsch) 111, 1057–1077 (2022). https://doi.org/10.1007/s00531-022-02171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02171-8

Keywords

Navigation