Skip to main content
Log in

Chronology, geochemical characteristics, and tectonic implications of a Triassic complex in the Rongma Area, Southern Qiangtang, Tibet

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The spatio-temporal evolution of the Paleo-Tethys Ocean has been a hot and controversial issue in the world. Here we carry out petrographic, chronological, and geochemical study on garnet–phengite–quartz schist and mafic rocks in the Rongma area from the northern margin of the Southern Qiangtang block to determine the early Mesozoic tectonic evolution of the Shuanghu Paleo-Tethys Ocean in northern Tibet. The zircons from a phengite–quartz schist sample yielded concordant ages of 1936–393 Ma, indicating that its protolith deposited after ~ 393 Ma. Overgrowth zoning garnet with three stages of metamorphic evolution from garnet core to rim (i.e., Peak metamorphic, early retrograde metamorphic, and late retrograde metamorphic stages) in the schist was recognized, indicating that two subduction in a short time might be involved for its genesis. Two groups of phengite in the schist yielded 40Ar/39Ar plateau ages of 229 ± 1.4 Ma and 225 ± 1.3 Ma, respectively; thus, the late retrograde metamorphism of the schist might occur at ~ 229–225 Ma. Zircon U–Pb dating of a diabase in the area yielded crystallization age of 241 ± 1.1 Ma implying its formation in the early Triassic. The Hf-in-zircon and whole-rock Nd isotopes of the diabase show εHf(t) of − 0.6- + 19.1 and εNd(t) of − 0.8 to  + 0.9, respectively. Combined with the whole-rock geochemical features of the early Triassic diabase (241 Ma) and gabbro (237 Ma), they indicate that these mafic rocks are formed in a back-arc extensional setting related to the subduction of the oceanic plate between the Northern and Southern Qiangtang blocks beneath the latter. Combined with regional data, our study favors that view bi-directional subduction of the Shuanghu Paleo-Tethys ocean in the Early Triassic and it was finally closed at ~ 237 to ~ 229 Ma. Our model will help us better understand the tectonic evolution of the Paleo-Tethys Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andersen T (2002) Correction of common lead in U-Pb analyses that do not report 204 Pb. Chem Geol 192:59–79. https://doi.org/10.1016/S0009-2541(02)00195-X

    Article  Google Scholar 

  • Baldwin JA, Powell R, Brown M, Moraes R, Fuck RA (2005) Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis-Itauçu Complex, central Brazil. J Metamorph Geol 23:511–531

    Article  Google Scholar 

  • Carson CJ, Powell R, Clarek GL (1999) Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: application to the Poue´bo Terrane, Pam Peninsula, New Caledonia. J Metamorph Geol 17:9–24

    Article  Google Scholar 

  • Cheng ZG, Zhang ZC, Xie QH, Hou T, Ke S (2018) Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett 489:100–110. https://doi.org/10.1016/j.epsl.2018.02.039

    Article  Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20(7):683–696

    Article  Google Scholar 

  • Dahlquist JA, Galindo C, Pankhurst RJ, Rapelad CW, Alasinoa PH, Saavedrae J, Fanning CM (2007) Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos 95:177–207

    Article  Google Scholar 

  • Dan W, Wang Q, White WM, Li XH, Zhang XZ, Tang GJ, Ou Q, Hao LL, Qi Y (2020) Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet. Geology. https://doi.org/10.1130/G47957.1

    Article  Google Scholar 

  • Dan W, Wang Q, Murphy JB, Zhang XZ, Xu YG, White WM, Jiang ZQ, Ou Q, Hao LL, Qi Y (2021) Short duration of Early Permian Qiangtang-Panjal large igneous province: Implications for origin of the Neo-Tethys Ocean. Earth Planet Sci Lett 568:117054

    Article  Google Scholar 

  • Dziggel A, Wulff K, Kolb J, Meyer FM, Lahaye Y (2009) Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: evidence from the Navachab gold deposit, Namibia. Chem Geol 262:262–276

    Article  Google Scholar 

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Miner 95:1006–1016

    Article  Google Scholar 

  • Deng WM, Yin JX, Diao ZP (1996) The study on volcanic rocks and basic ultrabasic rocks in Chabu-Shuanghu area, Qiangtang. Sci China (series D) 26:296–301 (in Chinese with English abstract)

    Google Scholar 

  • Diener JFA, Powell R, White RW, Holland TJB (2007) A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O. J Metamorph Geol 25:631–656

    Article  Google Scholar 

  • Du J, Zhang L, Shen X, Bader T (2014) A new P-T-t path of eclogites from Chinese southwestern Tianshan: constraints from P-T pseudosections and Sm-Nd isochron dating. Lithos 200–201(258–27):2

    Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518. https://doi.org/10.1029/2012GC004334

    Article  Google Scholar 

  • Gao X, Li JC, Yuan GL, Wang GH, Liang X, Zheng YL, Wang Q (2019) Middle-Late Triassic magmatic records for the accretionary processes of South Qiangtang accretionary terrane: The mafic dykes in Mayigangri-Jiaomuri area, North Tibet. Acta Petrol Sin 35:760–774. https://doi.org/10.18654/1000-0569/2019.03.09

    Article  Google Scholar 

  • Green E, Holland T, Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am Miner 92:1181–1189

    Article  Google Scholar 

  • Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Miner Petrol 145:492–501

    Article  Google Scholar 

  • Hu PY, Li C, Li J, Wang M, Xie CM, Wu YW (2014) Zircon U-Pb–Hf isotopes and whole-rock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China: Record of the closure of the Paleo-Tethys Ocean. Tectonophysics 623:83–99

    Article  Google Scholar 

  • Jäger E (1979) Introduction to geochronology. In: Lectures in isotope geology. Springer, Berlin, Heidelberg, pp 1–12

  • Jiang QY, Li C, Xie CM, Wang M, Hu PY, Wu H, Peng H, Chen JW (2014) Geochemistry and LA-ICP-MS zircon U-Pb age of volcanic rocks of Wangguoshan Formation in the Gangmar Co area of Qiangtang, Tibet. Geol Bull China 33:1702–1714 (in Chinese with English abstract)

    Google Scholar 

  • Kapp P, Yin A, Manning CE, Murphy M, Harrison TM, Spurlin M, Ding L, Deng XG, Wu CM (2000) Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology 28:19–22

    Article  Google Scholar 

  • Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH, Ding L (2003) Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics. https://doi.org/10.1029/2002TC001383

    Article  Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2007) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:749–806

    Google Scholar 

  • Le Bas M (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470. https://doi.org/10.1093/petrology/41.10.1467

    Article  Google Scholar 

  • Li C (1987) The Longmu Co–Shuanghu–Lancangjiang plate suture and the north boundary of distribution of Gondwana affinity Permian–Carboniferous system in Northern Tibet, China. J Changchun Univ Earth Sci 17:155–166 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Cheng LR, Zhang YC, Zhai QG (2004) Discovery of Ordovician-Devonian strata in the south of the Qiangtang area, Tibet. Chin Sci Bull 23: 602–604 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Zhai QG, Cheng LR, Xu F, Huang XP (2005) Thought on some key geological problems in the Qiangtang area, Qinghai-Tibet Plateau. Geol Bull China 24:295–301 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Zhai QG, Chen W, Yu JJ, Huang XP, Zhang Y (2006) Ar-Ar chronometry of the eclogite from central Qiangtang area. Qinghai-Tibet Plateau. Acta Petrol Sin 22:2843–2849 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Zhai QG, Dong YS, Jiang GW, Jie C, Wu YW, Wang M (2008a) Oceanic crust on the northern margin of Gondwana-evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau. Geol Bull China 27:1605–1612 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Zhai QG, Dong YS, Jiang GW, Xie CM, Wu YW, Wang M (2008b) Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: evidence from SHRIMP U-Pb dating and its tectonic implications. Acta Petrol Sin 24:31–36 (in Chinese with English abstract)

    Google Scholar 

  • Li GM, Li JX, Zhao JX, Qin KZ, Cao MJ, Evans NJ (2015a) Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: evidence from U-Pb ages, petrochemistry and Sr–Nd–Hf isotopes. J Asian Earth Sci 105:443–455

    Article  Google Scholar 

  • Li JC, Zhao ZB, Zheng YL, Yuan GL, Liang X, Wang GH, Liu X (2015b) The magmatite evidences in southern Qiangtang for Paleo-Tethys Ocean subducting collision: Gangtang-Co granites in Rongma, Tibet. Acta Petrol Sin 31:2078–2088 (in Chinese with English abstract)

    Google Scholar 

  • Li S, Chung SL, Hou Z, Chew D, Wang T, Wang B, Wang Y (2019) Early mesozoic magmatism within the tibetan plateau: implications for the Paleo-Tethyan tectonic evolution and continental amalgamation. Tectonics 38:3505–3543

    Article  Google Scholar 

  • Liang X, Wang GH, Yang B, Ran H, Zheng YL, Du JX, Li LG (2017) Stepwise exhumation of the Triassic Lanling high-pressure metamorphic belt in Central Qiangtang, Tibet: insights from a coupled study of metamorphism, deformation, and geochronology. Tectonics 36:652–670. https://doi.org/10.1002/2016TC004455

    Article  Google Scholar 

  • Liu Y, Santosh M, Zhao ZB, Niu WC, Wang GH (2011) Evidence for palaeo-Tethyan oceanic subduction within central Qiangtang, northern Tibet. Lithos 127:39–53

    Article  Google Scholar 

  • Liu HY, Guo HM, Xing LN, Zhan YH, Li FL, Shao JL, Niu H, Liang X, Li CQ (2016) Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. J Asian Earth Sci 117:33–51. https://doi.org/10.1016/j.jseaes.2015.11.021

    Article  Google Scholar 

  • Lu L, Zhang KJ, Yan LL, Jin X, Zhang YX (2017) Was Late Triassic Tanggula granitoid (central Tibet, western China) a product of melting of underthrust Songpan-Ganzi flysch sediments? Tectonics 36:902–928

    Article  Google Scholar 

  • Lu L, Qin Y, Li ZF, Yan LL, Jin X, Zhang KJ (2019) Diachronous closure of the Shuanghu Paleo-Tethys Ocean: constraints from the Late Triassic Tanggula arc-related volcanism in the East Qiangtang subterrane, Central Tibet. Lithos 328–329:182–199

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex, version 3.00: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication No. 4 Berkeley, California

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300. https://doi.org/10.1016/0012-821X(73)90129-5

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti Zr, y, and Nb Variations in Volcanic Rocks. Contrib Mineral Petrol 69:33–47. https://doi.org/10.1007/BF00375192

    Article  Google Scholar 

  • Peng TP, Zhao GC, Fan WM, Peng BX, Mao YS (2015) Late Triassic granitic magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: geochronology, petrogenesis and implications for the tectonic evolution of the Paleo-Tethys. Gondwana Res 27:1494–1508

    Article  Google Scholar 

  • Pullen A, Kapp P, Gehrels GE (2008) Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36:351–354

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Sp Pub 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Tao Y, Bi XW, Li CS, Hu RZ, Li YB, Liao MY (2014) Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China. Lithos 184–187:314–323

    Article  Google Scholar 

  • Wang GH, Han FL, Yang YJ, Li YQ, Cui JL (2009) Discovery and geologic significance of late Paleozoic accretionary complexes in central Qiangtang, northern Tibet, China. Chin Sci Bull 28:1181–1187 (in Chinese with English abstract)

    Google Scholar 

  • Wang Q, Wang GH, Fang ZX, Wang H, Gao X (2019) Geochronology, geochemistry and tectonic significance of high-pressure metamorphic rocks from yadan area in central Qiangtang, Tibet. Acta Petrol Sin 35:775–798 (in Chinese with English abstract)

    Article  Google Scholar 

  • Wei CJ, Powell R, Clarke GL (2004) Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. J Metamorph Geol 22:495–508

    Article  Google Scholar 

  • Wei C, Wang W, Clarke GL, Zhang L, Song S (2009) Metamorphism of high/ultrahigh-pressure pelitic–felsic schist in the South Tianshan Orogen, NW China: phase Equilibria and P–T path. J Petrol 50:1973–1991

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies condition: mineral equilibria calculations in the system. J Metamorph Geol 18:497–511

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2005) An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. J Metamorph Geol 23:579–602

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • Wilde SA, Zhou J-B (2015) The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. J Asian Earth Sci 113:909–921. https://doi.org/10.1016/j.jseaes.2015.05.005

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chem Geol 20:325–343. https://doi.org/10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

  • Wu YW (2013) The evolution record of Longmu Tco-Shuanghu-Lancang ocean: Cambrian-Permian ophiolites. Ph. D. Dissertation. Changchun: Jilin University, 1–162 (in Chinese with English summary)

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30. https://doi.org/10.1016/j.jseaes.2010.11.014

    Article  Google Scholar 

  • Wu H, Li C, Chen J, Xie C (2016) Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China. Lithosphere 8:141–149

    Article  Google Scholar 

  • Xu W, Liu F, Dong Y (2020) Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet. Earth-Sci Rev 201:103083

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280. https://doi.org/10.1146/annurev.earth.28.1.211

    Article  Google Scholar 

  • Yu JJ, Wang F, Xu WL, Gao FH, Pei FP (2012) Early Jurassic mafic magmatism in the Lesser Xing’an–Zhangguangcai Range NE China, and its tectonic implications: constraints from Zircon U-Pb Chronology and Geochemistry. Lithos 142:256–266. https://doi.org/10.1016/j.lithos.2012.03.016

    Article  Google Scholar 

  • Zhai QG, Li C, Cheng LR, Zhang YC (2004) Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Chin Sci Bull 23:1228–1230 (in Chinese with English abstract)

    Google Scholar 

  • Zhai QG, Li C, Huang XP (2007) The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: geochemical evidence of metabasites in Guoganjianian. Sci China Ser D Earth Sci 50:1302–1309. https://doi.org/10.1007/s11430-007-0051-7

    Article  Google Scholar 

  • Zhai QG, Li C, Dong YS, Wang J, Chen W, Zhang Y (2009) Petrology, mineralogy and 40Ar/39Ar chronology for Rongma blueschist from central Qiangtang, northern Tibet. Acta Petrol Sin 25:2281–2288 (in Chinese with English abstract)

    Google Scholar 

  • Zhai Q-G, Jahn M, Zhang RY, Wang J, Su L (2011a) Triassic subduction of the Paleo-Tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. J Asian Earth Sci 42:1356–1370. https://doi.org/10.1016/j.jseaes.2011a.07.023

    Article  Google Scholar 

  • Zhai QG, Zhang RY, Jahn BM, Li C, Song SG, Wang J (2011b) Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P-T path. Lithos 125:173–189

    Article  Google Scholar 

  • Zhai QG, Jahn B, Su L, Wang J, Mo XX, Lee HY, Wang KL, Tang SH (2013) Triassic arc magmatism in the Qiangtang area, northern Tibet: zircon U-Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications. J Asia Earth Sci 63:162–178

    Article  Google Scholar 

  • Zhang KJ, Tang XC (2009) Eclogites in the interior of the Tibetan Plateau and their geodynamic implications. Chin Sci Bull 54:2556–2567

    Google Scholar 

  • Zhang CL, Ye HM, Wang AG, Guo KY, Dong YG (2004a) Geochemistry of the Neoproterozoic diabase and basalt in South of Tarim plate: evidence for the Neoproterozoic breakup of the Rodinia super-continent in south of Tarim. Acta Petrolog Sin 20:473–482 (in Chinese with English abstract)

    Google Scholar 

  • Zhang YC, Li C, Cheng LR, Zhai QG (2004b) Discovery of Ordovician-Devonian strata in the south of the Qiangtang area, Tibet. Geol Bull China 23:602–604 (in Chinese with English abstract)

    Google Scholar 

  • Zhang YC, Zhai QG, Li C, Cheng LR (2004c) Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Geol Bull China 23:1228–1229 (in Chinese with English abstract)

    Google Scholar 

  • Zhang KJ, Cai JX, Zhang YX, Zhao TP (2006a) Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth Planet Sci Lett 245:722–729

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Li B, Zhu YT, Wei RZ (2006b) The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical comparison with the Jinsa suture. Geology 34:493–496

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Li B, Zhong LF (2007) Nd isotopes of siliciclastic rocks from Tibet, western China: Constraints on provenance and pre-Cenozoic tectonic evolution. Earth Planet Sci Lett 256:604–616

    Article  Google Scholar 

  • Zhang XZ, Dong YS, Li C, Chen W, Shi JRS, Zhang Y, Wang SY (2010) Identification of the eclogites with different ages and their tectonic significance in central Qiangtang, Tibetan Plateau: Constraints from 40Ar-39Ar geochronology. Geol Bull China 29:1815–1824 (in Chinese with English abstract)

    Google Scholar 

  • Zhang KJ, Tang XC, Wang Y, Zhang YX (2011) Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: Constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos 121:167–175

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Tang XC, Xia B (2012) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci Rev 114:236–249

    Article  Google Scholar 

  • Zhang L, Dong YS, Zhang XZ, Deng MR, Xu W (2014a) The discovery of the Early Permian adakitic rock in the Hongji Mountain area within central and western Qiangtang, Tibet Plateau, and its geological implications. Geol Bull China 33:1728–1739 (in Chinese with English abstract)

    Google Scholar 

  • Zhang XZ, Dong YS, Li C, Deng MR, Zhang L, Xu W (2014b) Silurian high-pressure granulites from Central Qiangtang, Tibet: constraints on early Paleozoic collision along the northeastern margin of Gondwana. Earth Planet Sci Lett 405:39–51

    Article  Google Scholar 

  • Zhang XZ, Dong YS, Wang Q, Dan W, Zhang C, Deng MR, Wang X, Xia XP, Zeng JP, Liang H (2016) Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics 35:1670–1686

    Article  Google Scholar 

  • Zhang YX, Jin X, Zhang KJ, Sun WD, Liu JM, Zhou XY, Yan LL (2018) Newly discovered Late Triassic Baqing Eclogite in Central Tibet indicates an anticlockwise West-East Qiangtang Collision. Sci Rep 8:966–966

    Article  Google Scholar 

  • Zhao Z et al (2015) Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet. Solid Earth 6:457–473

    Article  Google Scholar 

  • Zheng YF (2019) Subduction zone geochemistry. Geosci Front 10:1223–1254

    Article  Google Scholar 

  • Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ, Zhang XH (2009) The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478:230–246. https://doi.org/10.1016/j.tecto.2009.08.009

    Article  Google Scholar 

  • Zhu TX, Zhang QY, Feng XT, Dong H, Yu YS, Li HR (2010) 40Ar/39Ar isotopic dating of the glaucophane in Caiduo Caka, Central Qiangtang area, northern Tibet, China, and its geological significance. Acta Geol Sin 84:1448–1456 (in Chinese with English abstract)

    Google Scholar 

  • Zhu CY, Zhao G, Sun M, Liu Q, Han Y, Hou WZ, Zhang XR, Eizenhofer PR (2015) Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 216:241–253. https://doi.org/10.1016/j.lithos.2014.12.021

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by China Geological Survey’s project (No.KD-[2018]-XZ-035) 1:50000 Scale Regional Geological Survey of I45E022011 Mapsheet, South of Rongma Town, Tibet.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Wang or Xian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, ZZ., Wang, Q., Chen, X. et al. Chronology, geochemical characteristics, and tectonic implications of a Triassic complex in the Rongma Area, Southern Qiangtang, Tibet. Int J Earth Sci (Geol Rundsch) 111, 1079–1106 (2022). https://doi.org/10.1007/s00531-021-02129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02129-2

Keywords

Navigation