Skip to main content

Advertisement

Log in

Geochronology and geochemistry of Early Cretaceous bimodal volcanic rocks from Erguna Massif, NE China: evidence for the back-arc extension of the Mongol–Okhotsk orogenic belt

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Manzhouli–Xin Barag Right Banner area, located in the southwestern Erguna Massif, is characterized by the distribution of a large volume of Mesozoic volcanic rocks and many polymetallic deposits. However, the tectonic setting of this area during the Late Mesozoic remains controversial. In this study, zircon U–Pb ages range from 142.8 ± 1.8 to 140.4 ± 1.6 Ma for the alkali basalt from the Meiletu Formation and 140 ± 0.9 Ma for alkaline rhyolites from the Baiyingaolao Formation, forming a bimodal volcanic rock assemblage. The initial 87Sr/86Sr ratios range from 0.705365 to 0.705674, and the εNd(t) values vary from + 0.55 to + 1.47. The alkaline rhyolites show εHf(t) values ranging from + 5.3 to + 8.6, corresponding to TDM1 and TDM2 ages in the range of 0.48–0.58 Ga and 0.64–0.86 Ga, respectively. Combined with the major and trace element compositions, the Meiletu alkali basalts are characterized by Nb enrichment (averaging 23.6 ppm) and were derived from partial melting of metasomatized subcontinental lithospheric mantle and underwent moderate fractional crystallization of minerals (e.g. olivine, clinopyroxene, apatite, and plagioclase). The alkaline rhyolites show A1-type granite affinity and originated from partial melting of the mafic lower crust accompanied by fractional crystallization. This suite of bimodal volcanic rocks was mainly dominated by the Mongol–Okhotsk tectonic regime, and the Erguna Massif was in a back-arc extensional setting triggered by slab rollback during the Early Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

source from Yang et al. (2019) and references therein.

Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdel-Rahman A-FM, Nassar PE (2004) Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geol Mag 141:545–563

    Google Scholar 

  • Azizi H, Asahara Y, Tsuboi M (2014) Quaternary high-Nb basalts: Existence of young oceanic crust under the Sanandaj-Sirjan zone, NW Iran. Int Geol Rev 56:167–186

    Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb. J Petrol 32:365–401

    Google Scholar 

  • Brouxel M, Lapierre H, Michard A, Albarède F (1987) The deep layers of a Paleozoic arc: geochemistry of the Copley-Balaklala series, northern California. Earth Planet Sci Lett 85:386–400

    Google Scholar 

  • Cao YH, Liu YF (2020) Zircon U-Pb age, geochemical characteristics and metallogenic significance of ore-bearing porphyry of the Jiawula Ag-Pb-Zn deposit in Inner Mongolia. Geol Bull China 39:353–364

    Google Scholar 

  • Chen ZG, Zhang LC, Wan B, Wu HY, Cleven NT (2011) Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geol Rev 43:92–105

    Google Scholar 

  • Chen YJ, Zhang C, Wang P, Pirajno F, Li N (2017) The Mo deposits of Northeast China: a powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol Rev 81:602–640

    Google Scholar 

  • Coulon C, Maluski H, Bollinger C, Wang S (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planet Sci Lett 79:281–302

    Google Scholar 

  • Demonterova EI, Ivanov AV, Mikheeva EM, Arzhannikova AV, Frolov AO, Arzannikov SG, Bryanskiy NV, Pavlova LA (2017) Early to Middle Jurassic history of the southern Siberian continent (Transbaikalia) recorded in sediments of the Siberian Craton: Sm-Nd and U-Pb provenance study. B Soc Geol Fr 188:1–29

    Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-Type Granitoids; Petrogenetic and tectonic implications. Geology 20:641–644

    Google Scholar 

  • Feng ZQ, Liu YJ, Li L, Jin W, Jiang LW, Li WM, Wen QB, Zhao YL (2019) Geochemical and geochronological constraints on the tectonic setting of the Xinlin ophiolite, northern Great Xing’an Range, NE China. Lithos 326:213–229

    Google Scholar 

  • Forster HJ, Tischendorf G, Trumbull RB (1997) An evaluation of the Rb vs (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40:261–293

    Google Scholar 

  • Frey FA, Gerlach DC, Hickey RL, Lopez Escobar L, Munizaga Villavicencio F (1984) Petrogenesis of the Laguna del Maule volcanic complex, Chile (36°S). Contrib Mineral Petrol 88:133–149

    Google Scholar 

  • Geist D, Howard KA, Larson P (1995) The generation of oceanic rhyolites by crystal fractionation: the basalt-rhyolite association at Volcano Alcedo, Galapagos Archipelago. J Petro 36:965–982

    Google Scholar 

  • Gou J, Sun DY, Zhao ZH, Ren YS, Zhang XY, Fu CL, Wang X, Wei HY (2010) Zircon LA-ICPMS U-Pb dating and petrogenesis of rhyolites in Baiyingaolao Formation from the southern Manzhouli, Inner-Mongolia. Acta Petrol Sin 26:333–344

  • Gou J, Sun DY, Liu YJ, Ren YS, Zhao ZH, Liu XM (2013) Geochronology, petrogenesis, and tectonic setting of Mesozoic volcanic rocks, southern Manzhouli area, Inner Mongolia. Int Geol Rev 55:1029–1048

    Google Scholar 

  • Gou J, Sun DY, Ren YS, Hou XG, Yang DG (2017) Geochemical and Hf isotopic compositions of Late Triassic-Early Jurassic intrusions of the Erguna Block, Northeast China: petrogenesis and tectonic implications. Int Geol Rev 59:347–367

    Google Scholar 

  • Guo F, Fan WM, Li CW, Gao XF, Miao LC (2009) Early Cretaceous highly positive εNd felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth. Int J Earth Sci 98:1395–1411

    Google Scholar 

  • Han R, Qin KZ, Su SQ, Groves DI, Zhao C, Hui KX, Meng ZJ (2020) An Early Cretaceous Ag-Pb-Zn mineralization at Halasheng in the South Erguna Block, NE China: Constraints from U-Pb and Rb-Sr geochronology, geochemistry and Sr-Nd-Hf isotopes. Ore Geol Rev 122:103526

    Google Scholar 

  • Hochstaedter AG, Gill JB, Kusakabe M, Newman S, Pringle M, Taylor B, Fryer P (1990) Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry. Earth Planet Sci Lett 100:179–194

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Google Scholar 

  • Huang MD, Cui XZ, Pei SL, Zhang HL, Zhang JQ (2016) Rhyolite zircon U-Pb dating and its tectonic significance in Bayan Gol Formation, Hinggan Massif. Coal Geol China 28:30–36

  • IMBGMR (1996) Litho Stratigraphy of Inner Mongolia (in Chinese with English summary). China University of Geosciences Press, Wu Han, pp 1–344

    Google Scholar 

  • Inger S, Harris N (1993) Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34:345–368

    Google Scholar 

  • Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH, Wang YX (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 59:171–198

    Google Scholar 

  • Ji D, Liu HC (2019) Li YL (2019) Large-scale early cretaceous lower-crust melting derived adakitic rocks in NE China: implications for convergent bidirectional subduction and slab rollback. Int Geol Rev 62(18):2324–2343

    Google Scholar 

  • Jiang SH, Han SJ, Chen ZH, Mei YX, Wu YD, Yang YC, Liu YF, Zhang LL, Kang H (2019) Summary on metallogeny of copper deposits in Mongolia. Geol Sci Technol Inf 38:1–19

    Google Scholar 

  • Kavalieris I, Khashgerel BE, Morgan LE, Undrakhtamir A, Borohul A (2017) Characteristics and 40Ar/39Ar geochronology of the Erdenet Cu-Mo deposit, Mongolia. Econ Geol 112:1033–1053

    Google Scholar 

  • Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Sal’nikova EB (2003) Magmatism and geodynamics of Early Caledonian structures of the Central Asian fold belt (isotopic and geological data). Geol Geofiz 44:1280–1293

    Google Scholar 

  • Kravchinsky VA, Sorokin AA, Courtillot V (2002) Paleomagnetism of Paleozoic and Mesozoic sediments from the southern margin of Mongol-Okhotsk ocean, far eastern Russia. J Geophys Res: Solid Earth 107:10–22

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas M, Bonin B, Bateman P (2004) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, New York

    Google Scholar 

  • Li XC, Hu WL (2010) Geological characteristics and prospecting potential of Duobukuer molybdenum polymetallic deposit in Daxinganling. Miner Resour Geol 24:391–394

  • Li ZZ, Qin KZ, Li GM, Ishihara S, Jin LY, Song GX, Meng ZJ (2014) Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing’an Range NE China: partial melting of the juvenile lower crust in intra-plate extensional environment. Lithos 202–203:138–156

  • Li TG, Wu G, Liu J, Wang GR, Hu YQ, Zhang YF, Luo DF, Mao ZH, Xu B (2016) Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China. Lithos 261:340–355

    Google Scholar 

  • Li Y, Xu WL, Wang F, Tang J, Zhao S, Guo P (2017) Geochronology and geochemistry of late Paleozoic–early Mesozoic igneous rocks of the Erguna Massif, NE China: implications for the early evolution of the Mongol-Okhotsk tectonic regime. J Asian Earth Sci 144:205–224

    Google Scholar 

  • Li Y, Xu WL, Tang J, Pei FP, Wang F, Sun CY (2018a) Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos 304:57–73

    Google Scholar 

  • Li YL, Liu HC, Huangfu PP, He HY, Liu YZ (2018b) Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing’an range. Int J Earth Sci 107:1955–1974

    Google Scholar 

  • Liao W, Xu B, Wang YY, Zhao P, Li QS (2017) Early Devonian back-arc extension in the eastern Central Asian Orogenic Belt: Evidence from a bimodal volcanic sequence from Xilinhot, central Inner Mongolia (North China). J Asian Earth Sci 144:40–53

    Google Scholar 

  • Litvak VD, Poma S (2010) Geochemistry of mafic Paleocene volcanic rocks in the Valle del Cura region: implications for the petrogenesis of primary mantle-derived melts over the Pampean flat-slab. J S Am Earth Sci 29:705–716

    Google Scholar 

  • Liu J, Mao JW, Wu G, Wang F, Luo DF, Hu YQ (2014) Zircon U-Pb and molybdenite Re–Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing’an Range, China and its geological significance. J Asian Earth Sci 79:696–709

    Google Scholar 

  • Liu T, Ji F, Bian HY, Sun K, Zhang SJ, Biao SH (2015) Exhumation time of basement-uplift constrained by ages of the detrital zircons from paleozoic classic rocks in fulin area, Great Hinggan Mountains. Geol Rev 61:401–416

    Google Scholar 

  • Liu HC, Li YL, He HY, Huangfu PP, Liu YZ (2018) Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing’an massifs (NE China). Lithos 304:347–361

    Google Scholar 

  • Liu HC, Li YL, Wu LW, Huangfu PP, Zhang M (2019) Geochemistry of high-Nb basalt-andesite in the Erguna Massif (NE China) and implications for the early Cretaceous back-arc extension. Geol J 54:291–307

    Google Scholar 

  • Liu HC, Li YL, Wan ZF, Lai C-K (2020) Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: insights from magmatic and sedimentary record. Gondwana Res 88:185–200

    Google Scholar 

  • Mao AQ, Sun DY, Gou J, Dg Yang, Zheng H (2020) Late Palaeozoic-Early Mesozoic southward subduction of the Mongol-Okhotsk oceanic slab: geochronological, geochemical, and Hf isotopic evidence from intrusive rocks in the Erguna Massif (NE China). Int Geol Rev. https://doi.org/10.1080/00206814.2020.1758968

    Article  Google Scholar 

  • Meng E, Xu WL, Yang DB, Qiu KF, Li CH, Zhu HT (2011) Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petro Sin 27:1209–1226

    Google Scholar 

  • Niu SD, Li SR, Huizenga JM, Santosh M, Zhang DH, Zeng YJ, Li ZD, Zhao WB (2017) Zircon U-Pb geochronology and geochemistry of the intrusions associated with the Jiawula Ag-Pb-Zn deposit in the Great Xing’an Range, NE China and their implications for mineralization. Ore Geol Rev 86:35–54

    Google Scholar 

  • Pearce J (1996) A User’s Guide to Basalt Discrimination Diagrams. Geol Assoc Canada Short Course Notes 12:79–113

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: Orogenic Andesites and related rocks. Wiley, Chichester, pp 525–548

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration Melting of Metabasalt at 8–32 kbar: implications for Continental Growth and Crust-Mantle Recycling. J Petrol 36:891–931

    Google Scholar 

  • Şengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307

    Google Scholar 

  • Shao YX, Li GZ, Jiang HJ, Xu Z, Kou S, Lian CQ, Huang L (2020) LA-ICP-MS zircon U-Pb age and geochemistry of volcanic rocks from Mannitu Formation in Hanbumiao area, the western Great xing’an Range and their tectonic significance. Acta Geol Sin 94:3590–3606

    Google Scholar 

  • Sheldrick TC, Barry TL, Dash B, Gan CS, Millar IL, Barfod DN, Halton AM (2020a) Simultaneous and extensive removal of the East Asian lithospheric root. Sci Rep 10:1–6

    Google Scholar 

  • Sheldrick TC, Barry TL, Millar IL, Barfod DN, Halton AM, Smith DJ (2020b) Evidence for southward subduction of the Mongol-Okhotsk oceanic plate: Implications from Mesozoic adakitic lavas from Mongolia. Gondwana Res 79:140–156

    Google Scholar 

  • Shen P, Pan HD, Hattori K, Cooke DR, Seitmuratova E (2018) Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: Geodynamic settings, magmatic sources, and genetic models. Gondwana Res 58:161–194

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148:635–661

    Google Scholar 

  • Sorokin AA, Kotov AB, Kudryashov NM, Kovach VP (2016) Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian Orogenic Belt: age and geodynamic setting. Lithos 261:181–194

    Google Scholar 

  • Sorokin AA, Zaika VA, Kovach VP, Kotov AB, Xu W, Yang H (2020) Timing of closure of the eastern Mongol-Okhotsk Ocean: Constraints from U-Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Res 81:58–78

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lon Spec Publ 42:313–345

    Google Scholar 

  • Sun DY, Gou J, Ren YS, Fu CL, Wang X, Liu XM (2011) Zircon U-Pb dating and study on geochemistry of volcanic rocks in Manitu Formation from southern Manchuria, Inner Mongolia. Acta Petrol Sin 27:3083–3094

  • Tang J, Xu WL, Wang F, Wang W, Xu MJ, Zhang YH (2014) Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos 184:1–16

    Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Li Y (2015) Geochronology, geochemistry, and deformation history of late Jurassic-early Cretaceous intrusive rocks in the Erguna Massif, NE China: constraints on the Late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. Tectonophysics 658:91–110

    Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Wang W (2016) Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res 31:218–240

    Google Scholar 

  • Thompson AB, Connolly JAD (1995) Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J Geophys Res Solid Earth 100:15565–15579

    Google Scholar 

  • Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY, Zhu RX (2006) Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth and Planet Sci Lett 251:179–198 

  • Wang T, Guo L, Zhang L, Yang QD, Zhang JJ, Tong Y, Ye K (2015a) Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asian: implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. J Asian Earth Sci 97:365–392

    Google Scholar 

  • Wang ZH, Ge WC, Yang H, Zhang YL, Bi JH, Tian DX, Xu WL (2015b) Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China: Petrogenesis and tectonic implications. J Asian Earth Sci 111:120–137

    Google Scholar 

  • Wang JX, Xu J, Yu H, Shu GL, Feng DS, Shi JM, Sun ZJ (2019) Geological characteristics and metallogenic age of the large silver-lead-zinc deposit in Halasheng of Manzhouli area, Inner Mongolia. Geol Resour 28:18–24+97

  • Wang RL, Zeng QD, Zhang ZC, Zhou LL, Qin KZ (2021) Extensive mineralization in the eastern segment of the Xingmeng orogenic belt, NE China: A regional view. Ore Geol Rev 135:104204

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petr 95:407–419

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Google Scholar 

  • Wu FY, Jahn BM, Wilde S, Sun DY (2000) Phanerozoic crustal growth: U-Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328:89–113

    Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66:241–273

    Google Scholar 

  • Wu TT, Zhou YH, Chen C, Liu K, Bao QZ, Wu DT, Chai L (2018) Geochronology and geochemistry of the Early Cretaceous Basalt in the Genhe area, northern Great Xing’an Range and geological implications. Geol Explor 54:1270–1281

  • Xiao WJ, Santosh M (2014) The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res 25:1429–1444

    Google Scholar 

  • Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22:1069

    Google Scholar 

  • Xu MJ, Xu WL, Meng E, Wang F (2011) Zircon U–Pb chronology and geochemistry of Mesozoic volcanic rocks from the Shanghulin–Xiangyang basins in Erguna area, and its tectonic implications. Geol Bull China 30:1321–1338

  • Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB, Wang W (2013) Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci 74:167–193

    Google Scholar 

  • Xu LQ, Liu C, Deng JF, Li N, Dai M, Bai LB (2014) Geochemical characteristics and zircon U-Pb SHRIMP age of igneous rocks in Erentaolegai silver deposit, Inner Mongolia. Acta Petrologica Sinica 30:3203–3212

    Google Scholar 

  • Yang YT, Guo ZX, Song CC, Li XB, He S (2015) A short-lived but significant Mongol-Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous. Gondwana Res 28:1096–1116

    Google Scholar 

  • Yang ZF, Li J, Liang WF, Luo ZH (2016) On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: implications for source lithology and the origin of basalts. Earth-Sci Rev 157:18–31

    Google Scholar 

  • Yang DG, Sun DY, Gou J, Hou XG (2017) U-Pb ages of zircons from Mesozoic intrusive rocks in the Yanbian area, Jilin Province, NE China: transition of the paleo-Asian oceanic regime to the circum-Pacific tectonic regime. J Asian Earth Sci 143:171–190

    Google Scholar 

  • Yang ZF, Li J, Jiang QB, Xu F, Guo SY, Li Y, Zhang J (2019) Using major element logratios to recognize compositional patterns of basalt: implications for source lithological and compositional heterogeneities. J Geophys Res-Sol Ea 124:3458–3490

    Google Scholar 

  • Zhang KJ (2014) Genesis of the Late Mesozoic Great Xing′an Range large igneous Province in eastern central Asia: a Mongol-Okhotsk slab window model. Int Geol Rev 56:1557–1583

    Google Scholar 

  • Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH, Liu XM (2008) Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China. Lithos 102:138–157

    Google Scholar 

  • Zhang C, 2015. Geology, Geochemistry and Metallogenic Evolution of Molybdenum Deposits in the Great Hinggan Range. Ph.D. Thesis, Peking University, Beijing, 1–246 pp.

  • Zhao S, Xu WL, Tang J, Li Y, Guo P (2016) Timing of formation and tectonic nature of the purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China: constraints from field geology and U-Pb geochronology of detrital and magmatic zircons. Precambrian Res 281:585–601

    Google Scholar 

  • Zhao SJ, Gao LD, Yu HY, Piao LL, Liu ZH, Zhou YS, Zhang M, Zhang YL, Yang HX, Zhao WL (2018a) Classification and geological significance of the upper jurassic haritaolegai formation basalt in the Northern Da Hinggan Mountains. Geoscience 32:718–726

    Google Scholar 

  • Zhao SJ, Yu HY, Shen L, Zhang M, Zhou YS, Liu ZH, Zhang YL (2018b) Determination and geological significance of Chaihe Formation of the Lower Jurassic in north Daxing’anling Range. Geol Bull China 37:1302–1314

    Google Scholar 

Download references

Acknowledgements

We would like to thank Cheng Zhang, Jianwei Xiao for their help in fieldwork, zircon U–Pb, and geochemical analyses. The work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601303), the National Natural Science Foundation of China (41902094), and the Inner Mongolia Geological Exploration Foundation (18-1-KY02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong-Zheng Chen or Guang Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 314 KB)

Supplementary file2 (XLSX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Chen, GZ., Wu, G. et al. Geochronology and geochemistry of Early Cretaceous bimodal volcanic rocks from Erguna Massif, NE China: evidence for the back-arc extension of the Mongol–Okhotsk orogenic belt. Int J Earth Sci (Geol Rundsch) 111, 173–194 (2022). https://doi.org/10.1007/s00531-021-02106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02106-9

Keywords

Navigation