Skip to main content
Log in

Neoproterozoic modification of heterogeneous continental lithosphere beneath the Yangtze interior: revealed from mafic dykes from the Huangling area, South China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Archean Kongling tonalite–trondhjemite–granodiorite (TTG) rocks and Neoproterozoic Huangling granodiorite–monzogranite–tonalite complex occupy the core of the Huangling anticline of the northern Yangtze Craton, South China. These Precambrian felsic rocks have provided crucial clues for understanding the earliest crustal growth in South China. This study presents a set of new zircon U–Pb geochronological and Lu–Hf isotopic data, and whole-rock geochemical data for the mafic dykes, predominantly intruding the Kongling TTG package in the northern Huangling anticline. Our data show that the dykes might be geochemically subdivided into Groups 1 and 2. Group 1 is characterized by low Al2O3, Na2O + K2O, Mg#, Th/Ta, and Sm/Yb but high FeOt and TiO2. In contrast, the Group 2 samples are marked by higher Al2O3, Mg#, Th/Ta, and Sm/Yb but lower FeOt and TiO2. The Group 1 dykes are inferred to be of Paleoproterozoic origin. Group 2 has zircon U–Pb ages of ~ 800 Ma but distinct εHf(t) values among the rock samples, ranging from − 0.3 to − 31.5 and indicating the Neoproterozoic lithospheric mantle being heterogeneous. The Paleoproterozoic Group 1 mafic dykes originated from an enriched and dry lithospheric source. The Neoproterozoic Group 2 mafic dykes were generated by an enriched lithosphere that was modified by slab-released fluid. In addition, a tonalite sample from the southern Huangling anticline is dated at ~ 815 Ma, and has the εHf(t) values ranging from − 19.8 to + 6.9. The wide εHf(t) range suggests the mixing between an enriched lithosphere with a less enriched source. Our data, along with the coeval mafic rocks in NW South China, North Laurentia, and South Australia, indicate that the Neoproterozoic mafic dykes and tonalite in the Yangtze interior are most likely the products in the supra-subduction setting along the Rodinia margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

All data reported in this study are presented in Tables 1 and 2, and Supplementary Table 1.

References

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Miner Petrol 157(4):541–558

    Article  Google Scholar 

  • Amelin Y, Lee DC, Halliday AN (2000) Early-middle Archaean crustal evolution deduced from Lu–Hf and U-Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64(24):205–4225

    Article  Google Scholar 

  • Andersen T (2002) Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Black LP, Gulson BL (1978) The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Bur Miner Resour J Aust Geol Geophys 3:227–232

    Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Cawood PA, Wang Y, Xu Y, Zhao G (2013) Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 41(8):903–906

    Article  Google Scholar 

  • Cawood PA, Zhao G, Yao J, Wang W, Xu Y, Wang Y (2018) Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth Sci Rev 186:173–194

    Article  Google Scholar 

  • Chen K, Gao S, Wu Y, Guo J, Hu Z, Liu Y, Zong K, Liang Z, Geng X (2013) 2.6–2.7 Ga crustal growth in Yangtze craton. South China Precambr Res 224:472–490

    Article  Google Scholar 

  • Chen W, Xiong X, Wang J, Xue S, Li L, Liu X, Ding X, Song M (2018) TiO2 solubility and Nb and Ta partitioning in rutile-silica-rich supercritical fluid systems: implications for subduction zone processes. J Geophy Res Solid Earth 123(6):4765–4782

    Article  Google Scholar 

  • Chen W, Zhang G, Ruan M, Wang S, Xiong X (2021) Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation. J Geophy Res Solid Earth 126(3):e2020JB20708

    Article  Google Scholar 

  • Condie KC (1997) Sources of Proterozoic mafic dyke swarms: constraints from Th/Ta and La/Yb ratios. Precambr Res 81(1):3–14

    Article  Google Scholar 

  • Cui X, Zhu WB, Ge RF (2014) Provenance and crustal evolution of the northern Yangtze block revealed by detrital zircons from neoproterozoic-early Paleozoic sedimentary rocks in the Yangtze Gorges Area. South China J Geol 122(2):217–235

    Google Scholar 

  • Cui X, Zhu W, Fitzsimons ICW, He J, Lu Y, Wang X, Ge R, Zheng B, Wu X (2015) U-Pb age and Hf isotope composition of detrital zircons from Neoproterozoic sedimentary units in southern Anhui Province, South China: Implications for the provenance, tectonic evolution and glacial history of the eastern Jiangnan Orogen. Precambr Res 271:65–82

    Article  Google Scholar 

  • Cui X, Zhu W, Jourdan F (2021) Subduction-related subcontinental lithospheric mantle metasomatism and crustal thickening: origin for superchondritic Nb/Ta in mafic dykes. J Geol Soc 178(1).

  • Deng H, Peng S, Polat A, Kusky T, Jiang X, Han Q, Wang L, Huang Y, Wang J, Zeng W, Hu Z (2017) Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: evidence for evolving tectonic settings. Precambr Res 289:75–94

    Article  Google Scholar 

  • Ellam RM (1992) Lithospheric thickness as a control on basalt geochemistry. Geology 20(2):153–156

    Article  Google Scholar 

  • Ernst RE, Wingate MTD, Buchan KL, Li ZX (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr Res 160(1–2):159–178

    Article  Google Scholar 

  • Evans DA, Li ZX, Kirschvink JL, Wingate MT (2000) A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambr Res 100(1):313–334

    Article  Google Scholar 

  • Foden J, Song SH, Turner S, Elburg M, Smith PB, Van der Steldt B, Van Penglis D (2002) Geochemical evolution of lithospheric mantle beneath SE South Australia. Chem Geol 182(2–4):663–695

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417(6891):837–840

    Article  Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Article  Google Scholar 

  • Gao S, Ling W, Qiu Y, Lian Z, Hartmann G, Simon K (1999) Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim Cosmochim Acta 63(13):2071–2088

    Article  Google Scholar 

  • Gao S, Yang J, Zhou L, Li M, Hu Z, Guo J, Yuan H, Gong H, Xiao G, Wei J (2011) Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. Am J Sci 311(2):153–182

    Article  Google Scholar 

  • Gao R, Chen C, Wang H, Lu Z, Brown L, Dong S, Feng S, Li Q, Li W, Wen Z, Li F (2016) SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth Planet Sci Lett 454:86–91

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova EA, Saeed A (2007) Reply to “Comment to short-communication ‘Comment: Hf-isotope heterogeneity in zircon 91500’ by W. L. Griffin, N.J. Pearson E.A. Belousova and A. Saeed (Chem Geol 233 (2006) 358–363)” by F. Corfu Chem Geol 244:354–356

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  Google Scholar 

  • Guo JL, Gao S, Wu YB, Li M, Chen K, Hu ZC, Liang ZW, Liu YS, Zhou L, Zong KQ, Zhang W, Chen HH (2014) 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth. Precambr Res 242:82–95

    Article  Google Scholar 

  • Guo JL, Wu YB, Gao S, Jin ZM, Zong KQ, Hu ZC, Chen K, Chen HH, Liu YS (2015) Episodic Paleoarchean-Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze craton, South China: implications for late Archean tectonics. Precambr Res 270:246–266

    Article  Google Scholar 

  • Guo J, Zheng J, Ping X, Wan Y, Li Y, Wu Y, Zhao J, Wang W (2018) Paleoproterozoic porphyries and coarse-grained granites manifesting a vertical hierarchical structure of Archean continental crust beneath the Yangtze Craton. Precambr Res 314:288–305

    Article  Google Scholar 

  • Han Q, Peng S, Polat A, Kusky T, Deng H, Wu T (2018) A ca. 2.1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: evidence from high-Mg basalts and andesites. Precambr Res 309:309–324

    Article  Google Scholar 

  • Han Q, Peng S, Polat A, Kusky T (2019) Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: evidence for a collisional orogenic event in the Yangtze craton. Lithos 342:513–529

    Article  Google Scholar 

  • Harlan SS, Heaman L, LeCheminant AN, Premo WR (2003) Gunbarrel mafic magmatic event: a key 780 Ma time marker for Rodinia plate reconstructions. Geology 31(12):1053–1056

    Article  Google Scholar 

  • Heinonen JS, Fusswinkel T (2017) High Ni and low Mn/Fe in olivine phenocrysts of the Karoo meimechites do not reflect pyroxenitic mantle sources. Chem Geol 467:134–142

    Article  Google Scholar 

  • Herzberg C, Rudnick R (2012) Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149:4–15

    Article  Google Scholar 

  • Huang Q, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Maas R, Thompson J, Kamenetsky M, Chambefort I, Apukhtina O, Hu Y (2015) Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: links with the Gairdner large igneous province. Precambr Res 271:160–172

    Article  Google Scholar 

  • Huang DL, Wang XL, Xia XP, Wan YS, Zhang FF, Li JY, Du DH (2019) Neoproterozoic Low-δ18O Zircons revisited: implications for rodinia configuration. Geophys Res Let 46(2):678–688

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jiao WF, Wu YB, Yang SH, Peng M, Wang J (2009) The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Sci China, Ser D Earth Sci 52:1393–1399

    Article  Google Scholar 

  • Klemme S, Van der Laan SR, Foley SF, Günther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133(3–4):439–448

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K, Günther D (2005) Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta 69(9):2361–2371

    Article  Google Scholar 

  • La Flèche MR, Camire G, Jenner GA (1998) Geochemistry of post–Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec. Canada Chem Geol 148(3):115–136

    Article  Google Scholar 

  • Li XH, Li ZX, Ge W, Zhou H, Li W, Liu Y, Wingate MT (2003a) Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambr Res 122(1):45–83

    Article  Google Scholar 

  • Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H (2003b) Geochronology of Neoproterozoic syn–rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambr Res 122:85–109

    Article  Google Scholar 

  • Li ZX, Evans DAD, Zhang S (2004) A 90 spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth Planet Sci Lett 220(3):409–421

    Article  Google Scholar 

  • Li XH, Long WG, Li QL, LiuY ZYF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC, Tao H (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand Geoanal Res 34(2):117–134

    Article  Google Scholar 

  • Li L, Lin S, Davis DW, Xiao W, Xing G, Yin C (2014) Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambr Res 255:30–47

    Article  Google Scholar 

  • Li YH, Zheng JP, Ping XQ, Xiong Q, Xiang L, Zhang H (2018) Complex growth and reworking processes in the Yangtze cratonic nucleus. Precambr Res 311:262–277

    Article  Google Scholar 

  • Li NB, Niu HC, Yang WB, Lai CK, Zhao ZH (2019a) Orogenic root delamination induced by eclogitization of thickened lower crust in the Chinese Western Tianshan: constraints from adakites. J Geophy Res Solid Earth 124(11):11089–11104

    Article  Google Scholar 

  • Li QW, Zhao JH, Wang W (2019b) Ca. 2.0 Ga mafic dikes in the Kongling Complex, South China: implications for the reconstruction of Columbia. J Asian Earth Sci 169:323–335

    Article  Google Scholar 

  • Ling WL, Gao S, Zhang BR, Li HM, Liu Y, Cheng JP (2003) Neoproterozoic tectonic evolution of the northwestern Yangtze craton South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambr Res 122:111–140

    Article  Google Scholar 

  • Ling WL, Gao S, Cheng JP, Jiang LS, Yuan HL, Hu ZC (2006) Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: constraint form the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes. Acta Petrologica Sinica 22:387–396

    Google Scholar 

  • Liou JG, Zhang RY, Ernst WG, Liu J, Mclimans R (1998) Mineral parageneses in the Piampaludo eclogitic body, Gruppo di Voltri, Western Ligurian Alps. Swiss J Geosci Suppl 78(2):317–335

    Google Scholar 

  • Ma G, Li H, Zhang Z (1984) An investigation of the age limits of the Sinian System in South China. Bull Yichang Inst Geol Miner Resour 8:1–29 ((in Chinese with English abstract))

    Google Scholar 

  • Ma D, Du S, Xiao Z (2002) The origin of Huangling granite batholith. Acta Petrologica Et Mineralogica 21(2):151–161 ((in Chinese with English abstract))

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3):223–253

    Article  Google Scholar 

  • Merdith AS, Williams SE, Collins AS, Tetley MG, Mulder JA, Blades ML, Müller RD (2021) Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci Rev 214:103477

    Article  Google Scholar 

  • Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T, Mezger K (2003) Evolution of planetary cores and the Earth–Moon system from Nb/Ta systematics. Science 301(5629):84–87

    Article  Google Scholar 

  • Neal CR, Mahoney JJ, Chazey WJ (2002) Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: results from ODP Leg 183. J Petrol 43(7):1177–1205

    Article  Google Scholar 

  • Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle. Chem Geol 149:211–233

    Article  Google Scholar 

  • Park JK, Buchan KL, Harlan SS (1995) A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America. Earth Planet Sci Lett 132(1):129–139

    Article  Google Scholar 

  • Parman SW, Grove TL, Kelley KA, Plank T (2011) Along-arc variations in the pre-eruptive H2O contents of mariana arc magmas inferred from fractionation paths. J Petrol 52(2):626–636

    Article  Google Scholar 

  • Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449:202–205

    Article  Google Scholar 

  • Peng M, Wu Y, Wang J, Jiao W, Liu X, Yang S (2009) Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chin Sci Bull 54(6):1098–1104

    Google Scholar 

  • Peng M, Wu Y, Gao S, Zhang H, Wang J, Liu X, Gong H, Zhou L, Hu Z, Liu Y, Yuan H (2012) Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications. Gondwana Res 22(1):140–151

    Article  Google Scholar 

  • Pfänder JA, Jung S, Klügel A, Münker C, Romer RL, Sperner B, Rohrmüller J (2018) Recurrent local melting of metasomatised lithospheric mantle in response to continental rifting: constraints from basanites and nephelinites/melilitites from SE Germany. J Petrol 59(4):667–694

    Article  Google Scholar 

  • Qi L, Grégoire DC (2000) Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma–mass spectrometry. Geostand Newsl 24:51–63

    Article  Google Scholar 

  • Qiu YM, Gao S, McNaughton NJ, Groves DJ, Ling WL (2000) First evidence of ≥3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28:11–14

    Article  Google Scholar 

  • Qiu XF, Ling WL, Liu XM, Lu SS, Jiang T, Wei YX, Peng LH, Tan JJ (2018) Evolution of the Archean continental crust in the nucleus of the Yangtze block: evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane. South China J Asian Earth Sci 154:149–161

    Article  Google Scholar 

  • Qiu XF, Jiang T, Zhao XM, Lu SS, Xiao ZB (2020) Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze block, South China. Precambr Res 337:105537

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Google Scholar 

  • Sandeman HA, Ootes L, Cousens B, Kilian T (2014) Petrogenesis of Gunbarrel magmatic rocks: homogeneous continental tholeiites associated with extension and rifting of Neoproterozoic Laurentia. Precambr Res 252:166–179

    Article  Google Scholar 

  • Shu L, Wang J, Yao J (2019) Tectonic evolution of the eastern Jiangnan region, South China: new findings and implications on the assembly of the Rodinia supercontinent. Precambr Res 322:42–65

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3):311–324

    Article  Google Scholar 

  • Tang M, Lee CTA, Chen K, Erdman M, Costin G, Jiang H (2019) Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat Commun 10(1):235

    Article  Google Scholar 

  • Turner SJ, Langmuir CH, Dungan MA, Escrig S (2017) The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet Sci Lett 472:216–228

    Article  Google Scholar 

  • Wang XC, Li XH, Li ZX, Liu Y, Yang YH (2010) The Willouran basic province of South Australia: its relation to the Guibei large igneous province in South China and the breakup of Rodinia. Lithos 119(3–4):569–584

    Article  Google Scholar 

  • Wang XL, Shu LS, Xing GF, Zhou JC, Tang M, Shu XJ, Qi L, Hu YH (2012) Post-orogenic extension in the eastern part of the Jiangnan orogen: evidence from ca 800–760 Ma volcanic rocks. Precambr Res 222:404–423

    Article  Google Scholar 

  • Wang Y, Zhang A, Cawood PA, Fan W, Xu J, Zhang G, Zhang Y (2013) Geochronological, geochemical and Nd–Hf–Os isotopic fingerprinting of an early Neoproterozoic arc–back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambr Res 231:343–371

    Article  Google Scholar 

  • Wang Y, Zhang Y, Fan W, Geng H, Zou H, Bi X (2014) Early Neoproterozoic accretionary assemblage in the Cathaysia Block: geochronological, Lu–Hf isotopic and geochemical evidence from granitoid gneisses. Precambr Res 249:144–161

    Article  Google Scholar 

  • Wang XC, Wilde SA, Xu B, Pang CJ (2016) Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination. Lithos 261:5–45

    Article  Google Scholar 

  • Wang Y, Gan C, Tan Q, Zhang Y, He H, Xin Q, Zhang Y (2018) Early Neoproterozoic (∼ 840 Ma) slab window in South China: key magmatic records in the Chencai Complex. Precambr Res 314:434–451

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304

    Article  Google Scholar 

  • Wei JQ, Wang JX, Wang XD, Shan MY (2009) Dating of mafic dikes from Kongling Group in Huangling area and it applications. J Northw Univ (natural Science Edition) 39:466–471 ((in Chinese with English abstract))

    Google Scholar 

  • White WM, Klein EM (2014) 4.13—Composition of the oceanic crust. In: Turekian HDHK (ed) Treatise Geochem, 2nd edn. Elsevier, Oxford, pp 457–496

    Chapter  Google Scholar 

  • Wingate MT, Campbell IH, Compston W, Gibson GM (1998) Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambr Res 87(3):135–159

    Article  Google Scholar 

  • Wu YB, Gao S, Gong HJ, Xiang H, Jiao WF, Yang SH, Liu Y, Yuan HL (2009) Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high–grade metamorphism. J Metamorph Geol 27(6):461–477

    Article  Google Scholar 

  • Wu Y, Gao S, Zhang H, Zheng J, Liu X, Wang H, Gong H, Zhou L, Yuan H (2012) Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications. Precambr Res 200:26–37

    Article  Google Scholar 

  • Wu Y, Zhou G, Gao S, Liu X, Qin Z, Wang H, Yang J, Yang S (2014) Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambr Res 254:73–86

    Article  Google Scholar 

  • Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218(3–4):339–359

    Article  Google Scholar 

  • Xiong Q, Zheng J, Yu C, Su Y, Tang H, Zhang Z (2009) Zircon U-Pb age and Hf isotope of Quanyishang A–type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Chin Sci Bull 54(3):436–446

    Google Scholar 

  • Xu B, Jian P, Zheng H, Zou H, Zhang L, Liu D (2005) U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambr Res 136(2):107–123

    Article  Google Scholar 

  • Xu X, Xue D, Li Y, Hu P, Chen N (2014) Neoproterozoic sequences along the Dexing-Huangshan fault zone in the eastern Jiangnan orogen, South China: geochronological and geochemical constrains. Gondwana Res 25(1):368–382

    Article  Google Scholar 

  • Yao J, Shu L, Santosh M, Li J (2013) Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: constraining the assembly of Yangtze and Cathaysia Blocks in South China. J Asian Earth Sci 74:225–243

    Article  Google Scholar 

  • Yao J, Cawood PA, Shu L, Zhao G (2019) Jiangnan Orogen, South China: A ~ 970–820 Ma Rodinia margin accretionary belt. Earth-Sci Rev 196:102872

    Article  Google Scholar 

  • Yin C, Lin S, Davis DW, Zhao G, Xiao W, Li L, He Y (2013) 2.1–1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos 182:200–210

    Article  Google Scholar 

  • Yu JH, O’Reilly SY, Wang L, Griffin WL, Zhang M, Wang R, Jiang S, Shu L (2008) Where was South China in the Rodinia supercontinent?: evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambr Res 164(1):1–15

    Article  Google Scholar 

  • Zeng W, Zhong ZQ, Zhou HW, Jiang LS, Zhou ZY (2004) Geochemistry of mafic dykes in Huangling area and its tectonic implications. Earth Sci 29(1):31–38 ((in Chinese with English abstract))

    Google Scholar 

  • Zhang Y, Wang Y (2016) Early Neoproterozoic (~ 840 Ma) arc magmatism: geochronological and geochemical constraints on the metabasites in the central Jiangnan orogen. Precambr Res 275:1–17

    Article  Google Scholar 

  • Zhang YZ, Wang YJ (2020) Early Neoproterozoic continental arc system at the Central Jiangnan Orogen: geochronological and geochemical constraints on the key igneous rock-association. Geol Soc Am Bull 132(3–4):638–654

    Article  Google Scholar 

  • Zhang SB, Zheng YF, Zhao ZF, Wu YB, Yuan H, Wu FY (2008) Neoproterozoic anatexis of Archean lithosphere: geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge. South China Precambr Res 163(3):210–238

    Article  Google Scholar 

  • Zhang SB, Zheng YF, Zhao ZF, Wu YB, Yuan H, Wu FY (2009) Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113:347–368

    Article  Google Scholar 

  • Zhang Y, Wang Y, Fan W, Zhang A, Ma L (2012) Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (∼ 825 Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications. Precambr Res 220:139–157

    Article  Google Scholar 

  • Zhang SB, Zheng YF, Zhao ZF, Yuan HL (2016) The extremely enriched mantle beneath the Yangtze Craton in the Neoproterozoic: constraints from the Qichun pyroxenite. Precambr Res 276:194–210

    Article  Google Scholar 

  • Zhao G, Cawood PA (2012) Precambrian Geology of China. Precambr Res 222:13–54

    Article  Google Scholar 

  • Zhao JX, McCulloch MT, Korsch RJ (1994) Characterisation of a plume-related∼ 800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet Sci Lett 121(3–4):349–367

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP (2010) Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block. South China Lithos 115(1):177–189

    Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP (2013a) Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China. Precambr Res 233:93–107

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP, Griffin WL (2013b) Neoproterozoic tonalite and trondhjemite in the Huangling complex, South China: crustal growth and reworking in a continental arc environment. Ame J Sci 313(6):540–583

    Article  Google Scholar 

  • Zhao JH, Li QW, Liu H, Wang W (2018) Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator. Earth-Sci Rev 187:1–18

    Article  Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Zhang M, Pearson N, Pan Y (2006) Widespread Archean basement beneath the Yangtze craton. Geology 34:417–420

    Article  Google Scholar 

  • Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li X, Li Z, Wu FY (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96(1):127–150

    Article  Google Scholar 

  • Zheng YF, Wu RX, Wu YB, Zhang SB, Yuan HL, Wu FY (2008) Rift melting of juvenile arc–derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambr Res 163:351–383

    Article  Google Scholar 

  • Zhou MF, Yan DP, Kennedy AK, Li Y, Ding J (2002) SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc–magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67

    Article  Google Scholar 

Download references

Acknowledgements

We warmly thank the reviewers (Jörg Pfänder and three anonymous reviewers), Editor-in-Chief (Wolf-Christian Dullo) and Topic Editor (Stefan Jung) for providing clear and thoughtful commentary with the help of which the manuscript was greatly improved. The authors appreciate the assistance of R-F Ge, J-W He, M Luo, and X-M Ren for field work, zircon CL imaging, and U–Pb age analysis; X Yan and Z-Y Zhu for the Hf isotopic analysis; and M-Q Zhang and Q Liu for the geochemical analysis. Also the authors thanked Yuejun Wang and Ian Fitzsimons for offering constructive advice on earlier versions. This study was financially supported by grants from the National Key R&D Plan of China (2018YFC0603703, 2017YFC0601402, and 2016YFC0600303), the China Postdoctoral Science Foundation (2021M692411) and the National Natural Science Foundation of China (42002237 and U1701641).

Funding

This study was financially supported by grants from the National Key R&D Plan of China (2018YFC0603703, 2017YFC0601402, and 2016YFC0600303), the China Postdoctoral Science Foundation (2021M692411), and the National Natural Science Foundation of China (42002237 and U1701641).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Cui or Wenbin Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Zhu, W. & Wang, X. Neoproterozoic modification of heterogeneous continental lithosphere beneath the Yangtze interior: revealed from mafic dykes from the Huangling area, South China. Int J Earth Sci (Geol Rundsch) 111, 27–51 (2022). https://doi.org/10.1007/s00531-021-02098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02098-6

Keywords

Navigation