Skip to main content

Advertisement

Log in

Emplacement of the giant Kunene AMCG complex into a contractional ductile shear zone and implications for the Mesoproterozoic tectonic evolution of SW Angola

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Massif-type anorthosites are voluminous, plagioclase-dominated batholiths that occur worldwide, but only during the Proterozoic Eon. Granitoids are closely associated with the anorthosites, and they collectively may form an AMCG suite (i.e., anorthosite, mangerite, charnockite, granite). Many fundamental questions regarding the origin of the AMCG complexes remain unresolved, including their tectonic setting and mode of emplacement. Here, we present new data from reconnaissance structural mapping, U–Pb LA-ICP-MS zircon dating, and 40Ar/39Ar amphibole and mica dating from a 500 km2 area straddling the western margin of one of the world’s largest (≥ 15,000 km2), but also least studied AMCG suites, the Kunene Complex (KC) in Angola. The oldest recognized (pre-Kunene) deformation event D1 produced a steep WNW–ESE-striking S1 fabric in supracrustal rocks, migmatite and Paleoproterozoic (1800–1780 Ma) granodiorite before ~ 1680 Ma. This was folded by the D2 event, resulting in steep, N–S-striking S2 leucosomes and gneissosity in the rocks surrounding the KC. Concordant magmatic layering and lamination, and high- to low-temperature gneissic foliation in the marginal Kunene anorthosite and coeval megacrystic granite are parallel with S2 fabrics in the Paleoproterozoic country rocks. Mineral stretching lineations L2 in all rock types across intrusive contacts are steep and associated with west-side-up (thrust) shearing. Overlapping U–Pb zircon/baddeleyite ages from the Kunene megacrystic granite and Kunene anorthosite, with 40Ar/39Ar mica ages from the mantling Paleoproterozoic country rocks, attest to progressive contraction, thrusting and exhumation of the Paleoproterozoic country rocks onto the Kunene anorthosite in the interval 1410–1380 Ma. We suggest that thermal softening of the country rocks caused by heat dissipation from the earliest phase (1500–1410 Ma) of ponding of hot anorthositic magma in the deep crust localized D2 deformation at the margin of the KC. Our data point to a tectonic model whereby anorthosite sheets were emplaced at a high angle to the shortening direction and along host-rock S2 anisotropy deep in the crust and cooled during progressive ductile thrusting and exhumation of the country rocks. These results question the current view that Proterozoic AMCG suites are emplaced in extensional environments as large diapiric bodies and favor formation in a continental arc setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allaz J, Engi M, Berger A, Villa IM (2011) The effects of retrograde reactions and of diffusion on 40Ar–39Ar ages of micas. J Petrol 52:691–716

    Article  Google Scholar 

  • Alsop GI, Holdsworth RE (2006) Sheath folds as discriminators of bulk strain type. J Struct Geol 28:1588–1606

    Article  Google Scholar 

  • Arndt N (2013) The formation of massif anorthosite: petrology in reverse. Geosci Front 4:195–198

    Article  Google Scholar 

  • Ashwal LD (1993) Anorthosites. Berlin Heidelberg New York: pp 1–422

  • Ashwal LD, Bybee GM (2017) Crustal evolution and the temporality of anorthosites. Earth Sci Rev 173:307–330

    Article  Google Scholar 

  • Ashwal LD, Twist D (1994) The Kunene complex, Angola/Namibia: a composite massif-type anorthosite complex. Geol Mag 131:579–591

    Article  Google Scholar 

  • Barnichon JD, Havenith H, Hoffer B, Charlier R, Jongmans D, Duchesne JC (1999) The deformation of the Egersund-Ogna anorthosite massif, south Norway: finite-element modelling of diapirism. Tectonophysics 303:109–130

    Article  Google Scholar 

  • Baxe, OSS (2007) Geocronologia de complexos máfico-ultramáficos: exemplo da série superior do complexo de Niquelândia, Brasil, e do complexo Kunene, Angola. M.Sc. Dissertation (unpublished): pp 1–77

  • Bédard JH (2009) Parental magmas of Grenville Province massif-type anorthosites, and conjectures about why massif anorthosites are restricted to the Proterozoic. Earth Environ Sci Trans R Soc Edinb 100:77–103

    Google Scholar 

  • Bingen B, Stein HJ, Bogaerts M, Bolle O, Mansfeld J (2006) Molybdenite Re–Os dating constrains gravitational collapse of the Sveconorwegian orogen, SW Scandinavia. Lithos 87:328–346

    Article  Google Scholar 

  • Blanchard JA, Ernst RE, Samson C (2016) Gravity and magnetic modelling of layered mafic–ultramafic intrusions in large igneous province plume centre regions: case studies from the 1.27 Ga Mackenzie, 1.38 Ga Kunene–Kibaran, 0.06 Ga Deccan, and 0.13–0.08 Ga High Arctic events. Can J Earth Sci 54:290–310

    Article  Google Scholar 

  • Brandt S, Klemd R (2008) Upper-amphibolite facies partial melting of paragneisses from the Epupa complex, NW Namibia, and relations to mesoproterozoic anorthosite magmatism. J Metamorph Geol 26:871–893

    Article  Google Scholar 

  • Brandt S, Klemd, R, Okrusch M (2003) Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulites from the Proterozoic Epupa Complex, NW Namibia. J Petrol 44:1121–1144

    Article  Google Scholar 

  • Brandt S, Will TM, Klemd R (2007) Magmatic loading in the Proterozoic Epupa Complex, NW Namibia, as evidenced by ultra-high-temperature sapphirine-bearing orthopyroxene-sillimanite-quartz granulites. Precambrian Res 153:143–178

    Article  Google Scholar 

  • Brown M (2013) Granite: From genesis to emplacement. GSA Bull 125:1079–1113

    Article  Google Scholar 

  • Brown M (2014) The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci Front 5:553–569

    Article  Google Scholar 

  • Brown M, Johnson T (2019) Time's arrow, time's cycle: Granulite metamorphism and geodynamics. Mineralog Mag 83:323–338

    Article  Google Scholar 

  • Brun JP, Gapais D, Le Theoff B (1981) The mantled gneiss domes of Kuopio (Finland): interfering diapirs. Tectonophysics 74:283–304

    Article  Google Scholar 

  • Bybee GM, Ashwal LD, Shirey SB, Horan M, Mock T, Andersen TB (2014) Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho. Earth Planet Sci Lett 389:74–85

    Article  Google Scholar 

  • Bybee GM, Ashwal LD, Gower CF, Hamilton MA (2015) pegmatitic pods in the mealy mountains intrusive suite, Canada: clues to the origin of the olivine-orthopyroxene dichotomy in proterozoic anorthosites. J Petrol 56:845–868

    Article  Google Scholar 

  • Bybee GM, Hayes B, Owen-Smith TM, Lehmann J, Brower AM, Ashwal LD, Hill CM, Corfu F, Manga M (2019) Proterozoic massif-type anorthosites as the archetypes of long-lived magmatic systems: new evidence from the Kunene Anorthosite Complex (Angola). Precambrian Res 332(15):105393

    Article  Google Scholar 

  • de Carvalho H, Alves P (1990) Gabbro-anorthosite complex of SW-Angola/NW Namibia. Instituto de Investigacão Cientifica Tropical, Serie Ciencias da Terra. Lisboa Communicacoes 2:1–66

    Google Scholar 

  • de Carvalho H, Alves P (1993) The Precambrian of SW Angola and NW Namibia. Communicações Instituto de Investigação Cientifica Trop série de ciencias da terre 4:1–38

    Google Scholar 

  • de Carvalho H, Crasto J, Silva ZC, Vialette Y (1987) The Kibarian cycle in Angola: a discussion. Geol J 22:85–102

    Article  Google Scholar 

  • Cawood PA, Hawkesworth CJ (2019) Continental crustal volume, thickness and area, and their geodynamic implications. Gondwana Res 66:116–125

    Article  Google Scholar 

  • Cawthorn RG, Ashwal LD (2009) Origin of anorthosite and magnetite layers in the Bushveld Complex, constrained by major element compositions of plagioclase. J Petrol 50:1607–1637

    Article  Google Scholar 

  • Charlier B, Duchesne J-C, Vander Auwera J, Storme J-Y, Maquil R, Longhi J (2010) Polybaric fractional crystallization of high-alumina basalt parental magmas in the Egersund–Ogna massif-type anorthosite (Rogaland, SW Norway) constrained by plagioclase and high-alumina orthopyroxene megacrysts. J Petrol 51:2515–2546

    Article  Google Scholar 

  • Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360

    Article  Google Scholar 

  • Collins WJ (2002) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538

    Article  Google Scholar 

  • Collins WJ, Sawyer EW (1996) Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation. J Metamorph Geol 14:565–579

    Article  Google Scholar 

  • Corrigan D, Hanmer S (1997) Anorthosites and related granitoids in the Grenville orogen: a product of convective thinning of the lithosphere? Geology 25:61–64

    Article  Google Scholar 

  • Cosgrove JW (1997) The influence of mechanical anisotropy on the behaviour of the lower crust. Tectonophysics 280:1–14

    Article  Google Scholar 

  • Dhuime B, Wuestefeld A, Hawkesworth CJ (2015) Emergence of modern continental crust about 3 billion years ago. Nat Geosci 8:552–555

    Article  Google Scholar 

  • Dobmeier C (2006) Emplacement of Proterozoic massif-type anorthosite during regional shortening: evidence from the Bolangir anorthosite complex (Eastern Ghats Province, India) (journal article). Int J Earth Sci 95:543–555

    Article  Google Scholar 

  • Drüppel K, Littmann S, Okrusch M (2000) Geo- und isotopenchemische Untersuchungen der Anorthosite des Kunene-Intrusiv-Komplexes (KIC) in NW-Namibia. Berichte der Deutschen Mineralogischen Gesellschaft. Beiheft zum. Eur. J. Miner. 12:37

    Google Scholar 

  • Drüppel K, von Seckendorf V, Okrusch M (2001) Subsolidus reaction textures in the anorthositic rocks of the southern part of the Kunene intrusive Complex, NW Namibia. Eur J Mineral 13:289–309

    Article  Google Scholar 

  • Drüppel K, Littmann S, Romer RL, Okrusch M (2007) Petrology and isotope geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene intrusive complex, NW Namibia. Precambrian Res 156:1–31

    Article  Google Scholar 

  • Emslie RF (1978) Anorthosite massifs, Rapakivi granites, and late Proterozoic rifting of North America. Precambrian Res 7:61–98

    Article  Google Scholar 

  • Emslie RF, Hamilton MA, Thériault RJ (1994) Petrogenesis of a Mid-Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) Complex: Isotopic and Chemical Evidence from the Nain Plutonic Suite. J Geol 102:539–558

    Article  Google Scholar 

  • England RW (1990) The identification of granitic diapirs. J Geol Soc 147:931–933

    Article  Google Scholar 

  • Ernst RE, Pereira E, Hamilton MA, Pisarevsky SA, Rodriques J, Tassinari CCG et al (1110Ma) Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res 230:103–118

    Article  Google Scholar 

  • Fernandez-Alonso M, Cutten H, De Waele B, Tack L, Tahon A, Baudet D et al (2012) The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res 216–219:63–86

    Article  Google Scholar 

  • Ferré EC, Galland O, Montanari D, Kalakay TJ (2012) Granite magma migration and emplacement along thrusts. Int J Earth Sci 101:1673–1688

    Article  Google Scholar 

  • Gehrels G, Rusmore M, Woodsworth G, Crawford M, Andronicos C, Hollister L, Patchett J, Ducea M, Butler R, Klepeis K, Davidson D, Friedman R, Haggart J, Mahoney B, Crawford W, Pearson D, Girardi J (2009) U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution. GSA Bull 121:1341–1361

    Article  Google Scholar 

  • Griera A, Bons PD, Jessell MW, Lebensohn RA, Evans L, Gomez-Rivas E (2011) Strain localization and porphyroclast rotation. Geology 39:275–278

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Hippertt JF, Hongn FD (1998) Deformation mechanisms in the mylonite/ultramylonite transition. J Struct Geol 20:1435–1448

    Article  Google Scholar 

  • Ingram GM, Hutton DHW (1994) The Great Tonalite Sill: emplacement into a contractional shear zone and implications for late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. Geol Soc Am Bull 106:715–728

    Article  Google Scholar 

  • Jelsma HA, McCourt S, Perritt SH, Armstrong RA (2018) The geology and evolution of the Angolan Shield, Congo Craton. In: Siegesmund S, Basei MAS, Oyhantçabal P, Oriolo S (eds) Geology of Southwest Gondwana. Springer International Publishing, Cham, pp 217–239

    Chapter  Google Scholar 

  • Kampunzu AB, Rumvegeri BT, Kapenda D, Lubala RT, Caron JPH (1986) Les Kibarides d'Afrique centrale et orientale: Une chaine de collision UNESCO. Geol Dev Newsl 5:125–137

    Google Scholar 

  • Koegelenberg C, Kisters AFM, Kramers JD, Frei D (2015) U-Pb detrital zircon and 39Ar–40Ar muscovite ages from the eastern parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic basin formation and Mesoproterozoic crustal amalgamation along the western margin of the Tanzania Craton. Precambrian Res 269:147–161

    Article  Google Scholar 

  • Kokonyangi JW, Kampunzu AB, Armstrong R, Yoshida M, Okudaira T, Arima M, Ngulube DA (2006) The Mesoproterozoic Kibaride belt (Katanga, SE D.R. Congo). J Afr Earth Sci 46:1–35

    Article  Google Scholar 

  • Korenaga J (2008) Urey ratio and the structure and evolution of Earth's mantle. Rev Geophy 46:32

    Article  Google Scholar 

  • Köstlin EC (1974) The kunene basic complex, northern South West Africa. Chamb Mines Precambrian Res Unit Bull 15:123–135

    Google Scholar 

  • Kröner A, Rojas-Agramonte Y (2017) Mesoproterozoic (Grenville-age) granitoids and supracrustal rocks in Kaokoland, northwestern Namibia. Precambrian Res 298:572–592

    Article  Google Scholar 

  • Kröner A, Rojas-Agramonte Y, Hegner E, Hoffmann K-H, Wingate MTD (2010) SHRIMP zircon dating and Nd isotopic systematics of Palaeoproterozoic migmatitic orthogneisses in the Epupa Metamorphic Complex of northwestern Namibia. Precambrian Res 183:50–69

    Article  Google Scholar 

  • Kröner A, Rojas-Agramonte Y, Wong J, Wilde SA (2015) Zircon reconnaissance dating of Proterozoic gneisses along the Kunene River of northwestern Namibia. Tectonophysics 662:125–139

    Article  Google Scholar 

  • Lafrance B, John BE, Scoates JS (1996) Syn-emplacement recrystallization and deformation microstructures in the Poe Mountain anorthosite, Wyoming. Contrib Mineral Petrol 122:431–440

    Article  Google Scholar 

  • Lehmann J, Schulmann K, Edel JB, Ježek J, Hrouda F, Lexa O et al (2013) Structural and anisotropy of magnetic susceptibility records of granitoid sheets emplacement during growth of a continental gneiss dome (Central Sudetes, European Variscan Belt). Tectonics 32:797–820

    Article  Google Scholar 

  • Lehmann J, Bybee GM, Hayes B, Owen-Smith T (2018) A Mesoproterozoic cordilleran orogen recorded by the Kunene Anorthosite Complex in Angola. Paper presented at the AGU Fall Meeting Abstracts.

  • Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma-transport in dykes. J Geophys Res 96:10049–10077

    Article  Google Scholar 

  • Longhi J (2005) A mantle or mafic crustal source for Proterozoic anorthosites? Lithos 83:183–198

    Article  Google Scholar 

  • Longhi J, Ashwal LD (1985) Two-stage models for lunar and terrestrial anorthosites: Petrogenesis without a magma ocean. J Geophys Res 90:C571–C584

    Article  Google Scholar 

  • Longhi J, Auwera JV, Fram MS, Duchesne J-C (1999) Some phase equilibrium constraints on the origin of proterozoic (massif) anorthosites and related rocks. J Petrol 40:339–362

    Article  Google Scholar 

  • Lucas SB, Onge MR (1995) Syn-tectonic magmatism and the development of compositional layering, Ungava Orogen (northern Quebec, Canada). J Struct Geol 17:475–491

    Article  Google Scholar 

  • Maier WD, Rasmussen B, Fletcher IR, Li C, Barnes SJ, Huhma H (2013) The Kunene Anorthosite Complex, Namibia, and its satellite intrusions: geochemistry, geochronology, and economic potential. Econ Geol 108(5):953–986

    Article  Google Scholar 

  • Marsh BD (1982) On the mechanics of igneous diapirism, stoping, and zone melting. Am J Sci 282:808–855

    Article  Google Scholar 

  • Mayer A, Hofmann AW, Sinigoi S, Morais E (2004) Mesoproterozoic Sm–Nd and U-Pb ages for the Kunene anorthosite complex of SW Angola. Precambrian Res 133:187–206

    Article  Google Scholar 

  • McCourt S, Armstrong RA, Jelsma H, Mapeo RBM (2013) New U-Pb SHRIMP ages from the Lubango region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa. J Geol Soc 170:353–363

    Article  Google Scholar 

  • McLelland J, Daly JS, McLelland JM (1996) The Grenville orogenic cycle (ca. 1350–1000 Ma): an Adirondack perspective. Tectonophysics 265:1–28

    Article  Google Scholar 

  • McLelland JM, Bickford ME, Hill BM, Clechenko CC, Valley JW, Hamilton MA (2004) Direct dating of Adirondack massif anorthosite by U-Pb SHRIMP analysis of igneous zircon: Implications for AMCG complexes. GSA Bull 116:1299–1317

    Article  Google Scholar 

  • McLelland JM, Selleck BW, Hamilton MA, Bickford ME (2010) Late to post-tectonic setting of some major Proterozoic anorthosite – mangerite – charnockite – granite (AMCG) suite. Can Mineral 48:729–750

    Article  Google Scholar 

  • Menge GFW (1998) The antiformal structure and general aspects of the Kunene Complex, Namibia. Zeitschrift der Deutschen Geologischen Gesellschaft 149:433–448

    Google Scholar 

  • Morais E, Sinigoi S, Mayer A, Mucana A, Miguel LG, Neto J (1998) The Kunene gabbro-anorthosite complex: preliminary results based on our new field and chemical data. Afr Geosci Rev 5(4):485–498

    Google Scholar 

  • Mukherjee A, Jana P, Das S (1999) The Banpur-Balugaon and Bolangir Anorthosite Diapirs of the Eastern Ghats, India: Implications for the Massif Anorthosite Problem. Int Geol Rev 41:206–242

    Article  Google Scholar 

  • Myers JS, Voordouw RJ, Tettelaar TA (2008) Proterozoic anorthosite–granite Nain batholith: structure and intrusion processes in an active lithosphere-scale fault zone, northern Labrador. Can J Earth Sci 45:909–934

    Article  Google Scholar 

  • Nagaraju J, Chetty TRK, Prasad GSV, Patil SK (2008) Transpressional tectonics during the emplacement of Pasupugallu Gabbro Pluton, western margin of Eastern Ghats Mobile Belt, India: evidence from AMS fabrics. Precambrian Res 162:86–101

    Google Scholar 

  • Paterson SR, Fowler TK (1993) Re-examining pluton emplacement processes. J Struct Geol 15:191–206

    Article  Google Scholar 

  • Paterson SR, Miller RB (1998) Magma emplacement during arc-perpendicular shortening: an example from the Cascades crystalline core, Washington. Tectonics 17:571–586

    Article  Google Scholar 

  • Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. GSA Bull 107:1356–1380

    Article  Google Scholar 

  • Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82

    Article  Google Scholar 

  • Pereira E, Tassinari CG, Rodrigues JF, Van-Dúnen MV (2011) New data on the deposition age of the volcano-sedimentary Chela Group and its Eburnean basement: implications to post-Eburnean crustal evolution of the SW of Angola. Comunicações Geológicas do LNEG 98:27–40

    Google Scholar 

  • Petford N, Kerr R, Lister JR (1993) Dike transport of granitoid magmas. Geology 21:845–848

    Article  Google Scholar 

  • Price MJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge

    Google Scholar 

  • Rey PF, Coltice N (2008) Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36:635–638

    Article  Google Scholar 

  • Rey PF, Houseman G (2006) Lithospheric scale gravitational flow: the impact of body forces on orogenic processes from Archaean to Phanerozoic. Geol Soc Lond Spec Publ 253:153–167

    Article  Google Scholar 

  • Royse KR, Park RG (2000) Emplacement of the Nain anorthosite: diapiric versus conduit ascent. Can J Earth Sci 37:1195–1207

    Article  Google Scholar 

  • Scoates JS, Chamberlain KR (1997) Orogenic to Post-orogenic Origin for the 1.76 Ga Horse Creek Anorthosite Complex, Wyoming, USA. J Geol 105:331–344

    Article  Google Scholar 

  • Serviços De Geologia E Minas De Angola maps 1:100 000 maps SUL D-33 N-IV, SUL D-33 O, SUL D-33 T-I, SUL D-33 T-II, SUL D-33 T-III, SUL D-33 T-IV, SUL D-33 U, 1:250 000 map SUL E B-C-H-I, and 1:1 000 000 Mineral resources map

  • Seth B, Armstrong RA, Brandt S, Villa IM, Kramers JD (2003) Mesoproterozoic U-Pb and Pb-Pb ages of granulites in NW Namibia: reconstructing a complete orogenic cycle. Precambrian Res 126:147–168

    Article  Google Scholar 

  • Seth B, Armstrong RA, Buttner A, Villa IM (2005) Time constraints for Mesoproterozoic upper amphibolite facies metamorphism in NW Namibia: a multi-isotopic approach. Earth Planet Sci Lett 230:355–378

    Article  Google Scholar 

  • Silva ZCG (1992) Mineralogy and cryptic layering of the Kunene anorthosite complex of SW Angola and Namibia. Mineral Mag 56:319–327

    Article  Google Scholar 

  • Simpson ESW (1970) The anorthosite of southern Angola: A review of present data. In: Clifford TN, Gass IG (eds) African magmatism and tectonics. Oliver and Boyd, Edinburgh, pp 89–96

    Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 116:209–229

    Article  Google Scholar 

  • Slagstad T, Roberts NMW, Coint N, Høy I, Sauer S, Kirkland CL et al (2018) Magma-driven, high-grade metamorphism in the Sveconorwegian Province, southwest Norway, during the terminal stages of Fennoscandian Shield evolution. Geosphere 14:861–882

    Article  Google Scholar 

  • Slejko FF, Demarchi G, Morais E (2002) Mineral chemistry and Nd isotopic composition of two anorthositic rocks from the Kunene Complex (south west Angola). J Afr Earth Sci 35:77–88

    Article  Google Scholar 

  • Tack L, Wingate MTD, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M (2010) The 1375 Ma "Kibaran event" in central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Res 180:63–84

    Article  Google Scholar 

  • Tang M, Chen K, Rudnick RL (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351:372–375

    Article  Google Scholar 

  • Thompson AB, Schulmann K, Ježek J (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens. Geology 25:491–494

    Article  Google Scholar 

  • Vigneresse JL (2005) The specific case of the Mid-Proterozoic Rapakivi granites and associated suite within the context of the Columbia supercontinent. Precambrian Res 137:1–34

    Article  Google Scholar 

  • Villa IM, Bucher S, Bousquet R, Kleinhanns IC, Schmid SM (2014) Dating Polygenetic Metamorphic Assemblages along a Transect across the Western Alps. J Petrol 55:803–830

    Article  Google Scholar 

  • Weinberg RF (1999) Mesoscale pervasive felsic magma migration; alternatives to dyking. In: Sial AN, Stephens WE, Ferreira VP (eds) Granites; crustal evolution and associated mineralization. Lithos, Amsterdam, pp 393–410

    Google Scholar 

  • Weinberg RF, Regenauer-Lieb K (2010) Ductile fractures and magma migration from source. Geology 38:363–366

    Article  Google Scholar 

  • Weinberg RF, Searle MP (1998) The Pangong Injection Complex, Indian Karakoram: a case of pervasive granite flow through hot viscous crust. J Geol Soc 155:883–891

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wijbrans J, McDougall I (1986) 40Ar/39Ar dating of white micas from an Alpine high-pressure metamorphic belt on Naxos (Greece): the resetting of the argon isotopic system. Contrib Mineral Petrol 93:187–194

    Article  Google Scholar 

  • Woussen G, Dimroth E, Corriveau L, Archer P (1981) Crystallization and emplacement of the Lac St-Jean anorthosite massif (Quebec, Canada). Contrib Mineral Petrol 76:343–350

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alfred Kröner and Pablo González Cuadra for providing the detailed geological maps of SW Angola. Katie Hill, Alan Brower and Daniel Kwayisi are thanked for their assistance in the field and Lew Ashwal for discussions on anorthosite geology. Martin le Roux is thanked for guiding us in the field in 2015 and for part of 2016. LA-MC-ICP-MS equipment at UJ was funded by an NRF-NEP grant (No. 93208). This work is supported by a National Research Foundation (NRF) Thuthuka Grant (TTK14052367805) awarded to GMB, and by the DSI-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis (DSI-NRF CIMERA). We thank J. Žák and an anonymous reviewer for constructive comments and P. Hasalová for her editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremie Lehmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 28 kb)

Figure S1: Additional U-Pb diagrams for samples KAC35-38A and KAC35-38B. Supplementary file 2 (PDF 917 kb)

531_2020_1837_MOESM3_ESM.pdf

Figure S2: Additional 40Ar/39Ar geochronology data. Associated Ca/K ratio spectra are presented for the amphiboles (d) to (f). (g) Inverse isochron diagram for subsample KAC27-31 amphibole duplicate with the three first and last heating steps removed. (h) Recalculated laser ablation age spectrum for subsample KAC27-31 amphibole duplicate using 40Ar/39Ar value of 1650.17, corresponding to the value at the intersection between the 36Ar/40Ar axis and the regression line in the 36Ar/40Ar vs 39Ar/40Ar plot of (g). Supplementary file 3 (PDF 153 kb)

207Pb/206Pb weighted mean age for secondary reference material. Supplementary file 4 (PDF 140 kb)

531_2020_1837_MOESM5_ESM.xlsx

Summary of LA-MC-ICP-MS U–Pb zircon geochronology data at University of Johannesburg, including zircon reference material values for the LA–MC–ICP–MS (this table has been formatted according to the guidelines laid out in Horstwood et al. 2016); and U–Pb CA–ID–TIMS analysis at University of Oslo. Supplementary file 5 (XLSX 109 kb)

Supplementary file 6 (XLSX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, J., Bybee, G.M., Hayes, B. et al. Emplacement of the giant Kunene AMCG complex into a contractional ductile shear zone and implications for the Mesoproterozoic tectonic evolution of SW Angola. Int J Earth Sci (Geol Rundsch) 109, 1463–1485 (2020). https://doi.org/10.1007/s00531-020-01837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01837-5

Keywords

Navigation