Skip to main content
Log in

Oxygen and carbon isotope compositions of carbonates in a prominent lithologically mixed unit in the central South Norwegian Caledonides

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A prominent pre-Scandian lithologically mixed unit in the central South Norwegian Caledonides contains more than 100 partly carbonated and hydrated metaperidotite bodies and locally fossiliferous detrital serpentinites. The lateral consistency of this mixed unit was not fully appreciated in the past. Therefore, parts of the mixed unit along strike were interpreted to belong to several different tectonostratigraphic levels. Here, we present new carbonate stable isotope data that suggest that the carbonates of the mixed unit between Bergen and Otta (re-)equilibrated at unit-wide similar peak metamorphic conditions. The isotope compositions are characteristic for this unit and indicate that it represented one single tectonic unit during the Scandian Orogeny. The carbonates in the mélange are characterized by a narrow range of δ18O (SMOW) values between + 11 and + 15.5‰ and three groups of δ13C (PDB) values: (I) + 1.6 to + 0.3‰, (II) − 1.8 to − 3.9‰, and (III) − 6 to − 8.6‰. Carbonates of group III probably were affected by decarbonation or by a fluid containing organic carbon, whereas carbonates of group I and II overlap with δ13C values typical for Ediacaran–Silurian marine carbonates and may have retained their initial δ13C imprint. We suggest that the δ18O values (re-)equilibrated with unit-wide released metamorphic fluids during Scandian metamorphism. An outcrop-scale homogenisation of the δ13C values reflects the local carbon isotope signature of the released metamorphic fluids that circulated channelized through the mélange unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alsaker E, Furnes H (1994) Geochemistry of the Sunnfjord Melange sediment mixing from different sources during obduction of the Solund–Stavfjord Ophiolite Complex, Norwegian Caledonides. Geol Mag 131:105–121

    Article  Google Scholar 

  • Andersen TB (1998) Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics 285:333–351. doi: 10.1016/S0040-1951(97)00277-1

    Article  Google Scholar 

  • Andersen TB, Skjerlie KP, Furnes H (1990) The Sunnfjord Melange, evidence of Silurian ophiolite accretion in the West Norwegian Caledonides. J Geol Soc 147:59–68. doi: 10.1144/gsjgs.147.1.0059

    Article  Google Scholar 

  • Andersen TB, Jamtveit B, Dewey JF, Swensson E (1991) Subduction and eduction of continental crust major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova 3:303–310. doi: 10.1111/j.1365-3121.1991.tb00148.x

    Article  Google Scholar 

  • Andersen TB, Berry IV HN, Lux DR, Andresen A (1998) The tectonic significance of pre-Scandian 40Ar39Ar phengite cooling ages in the Caledonides of western Norway. J Geol Soc 155:297–309

    Article  Google Scholar 

  • Andersen TB, Torsvik TH, Eide EA, Osmundsen P-T, Faleide JI (1999) Permian and Mesozoic extensional faulting within the Caledonides of central south Norway. Journal of the Geological Society 156:1073–1080. doi: 10.1144/gsjgs.156.6.1073

    Article  Google Scholar 

  • Andersen TB, Corfu F, Labrousse L, Osmundsen P-T (2012) Evidence for hyperextension along the pre-Caledonian margin of Baltica. J Geol Soc 169:601–612. doi:10.1144/0016-76492012-011

    Article  Google Scholar 

  • Austrheim H (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232. doi: 10.1016/0012-821x(87)90158-0

    Article  Google Scholar 

  • Baird GB, Figg SA, Chamberlain KR (2014) Intrusive age and geochemistry of the Kebne Dyke Complex in the Seve Nappe Complex, Kebnekaise Massif, arctic Sweden Caledonides. Gff 136:556–570. doi:10.1080/11035897.2014.924553

    Article  Google Scholar 

  • Bakke S, Korneliussen A (1986) Jack-straw-textured olivines in some Norwegian metaperidotites. Nor J Geol 66:271–276

    Google Scholar 

  • Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geol Soc Am Bull 80:1947–1960

    Article  Google Scholar 

  • Barnes CG, Prestvik T, Sundvoll B, Surratt D (2005) Pervasive assimilation of carbonate and silicate rocks in the Hortavær igneous complex,north-central Norway. Lithos 80:179–199. doi:10.1016/j.lithos.2003.11.002

    Article  Google Scholar 

  • Bebout GE, Agard P, Kobayashi K, Moriguti T, Nakamura E (2013) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chem Geol 342:1–20. doi:10.1016/j.chemgeo.2013.01.009

    Article  Google Scholar 

  • Beinlich A, Plümper O, Hövelmann J, Austrheim H, Jamtveit B (2012) Massive serpentinite carbonation at Linnajavri, N-Norway. Terra Nova 24:446–455. doi:10.1111/j.1365-3121.2012.01083.x

    Article  Google Scholar 

  • Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Vitale Brovarone A, Masini E (2014) Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts:The Alpine case study. Earth Sci Rev 131:88–115. doi:10.1016/j.earscirev.2014.01.001

    Article  Google Scholar 

  • Beltrando M, Stockli DF, Decarlis A, Manatschal G (2015) A crustal-scale view at rift localization along the fossil Adriatic margin of the Alpine Tethys preserved in NW Italy. Tectonics 34:1927–1951. doi:10.1002/2015tc003973

    Article  Google Scholar 

  • Bingen B, Demaiffe D, van Breemen O (1998) The 616 Ma old Egersund basaltic dike swarm, SW Norway, and Late Neoproterozoic opening of the Iapetus Ocean. J Geol 106:565–574

    Article  Google Scholar 

  • Bjerga A (2014) Evolution of talc- and carbonate-bearing alterations in ultramafic rocks on Leka (Central Norway). Master’s Thesis, University of Bergen

  • Brueckner HK, van Roermund HLM (2004) Dunk tectonics: a multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics 23:20. doi:10.1029/2003tc001502

    Article  Google Scholar 

  • Bruton DL, Harper DAT (1981) Brachiopods and trilobites of the early Ordovician serpentine Otta Conglomerate, south central Norway. Norw J Geol 61:153–181

    Google Scholar 

  • Bucher-Nurminen K (1988) Metamorphism of ultramafic rocks in the Central Scandinavian Caledonides. Geol Sur Norw Spec Publ 3:86–95

    Google Scholar 

  • Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190:173–192

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) (re-)equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81. doi: 10.2138/gsrmg.43.1.1

    Article  Google Scholar 

  • Chenin P, Manatschal G, Picazo S, Karner G, Johnson C, Ulrich M (2017) Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13:559–576. doi:10.1130/GES01363.1

    Article  Google Scholar 

  • Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M (2014) Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. Int J Earth Sci (Geol Rundsch) 103:141–163. doi:10.1007/s00531-013-0927-z

    Article  Google Scholar 

  • Collins NC, Bebout GE, Angiboust S, Agard P, Scambelluri M, Crispini L, John T (2015) Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chem Geol 412:132–150. doi:10.1016/j.chemgeo.2015.06.012

    Article  Google Scholar 

  • Cook-Kollars J, Bebout GE, Collins NC, Angiboust S, Agard P (2014) Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chem Geol 386:31–48. doi:10.1016/j.chemgeo.2014.07.013

    Article  Google Scholar 

  • Corfu F, Torsvik TH, Andersen TB, Ashwal LD, Ramsay DM, Roberts RJ (2006) Early Silurian mafic-ultramafic and granitic plutonism in contemporaneous flysch,Magerøy, northern Norway: U–Pb ages and regional significance. J Geol Soc 163:291–301. doi: 10.1144/0016-764905-014

    Article  Google Scholar 

  • Corfu F, Gerber M, Andersen TB, Torsvik TH, Ashwal LD (2011) Age and significance of Grenvillian and Silurian orogenic events in the Finnmarkian Caledonides, northern NorwayThis article is one of a series of papers published in this Special Issue on the theme ofGeochronologyin honour of Tom Krogh. Can J Earth Sci 48:419–440. doi:10.1139/e10-043

    Article  Google Scholar 

  • Corfu F, Gasser D, Chew DM (2014) New perspectives on the Caledonides of Scandinavia and related areas: introduction. Geol Soc Lond Spec Publ 390:1–8 doi:10.1144/SP390.28

    Article  Google Scholar 

  • Das Sharma S, Patil DJ, Gopalan K (2002) Temperature dependence of oxygen isotope fractionation of CO2 from magnesite-phosphoric acid reaction. Geochim Cosmochim Acta 66:589–593

    Article  Google Scholar 

  • Dunning GR, Pedersen R-BS (1988) 1988 - UPb ages of ophiolites and arc-related plutons of the Norwegian Caledonides implications for the development of Iapetus. Contrib Mineral Petrol 98:13–23

    Article  Google Scholar 

  • Enger AS (2016) Solitary mantle peridotites in Stølsheimen, Central South Norway. Master’s Thesis, University of Oslo

  • Færseth RB, Thon A, Larsen SG, Sivertsen A, Elvestad L (1977) Geology of the lower paleozoic rocks in the Samnanger-Osterøy Area, Major Bergen Arc,Western Norway. Geol Sur Nor Bull 334:19–58

    Google Scholar 

  • Fauconnier J, Labrousse L, Andersen TB, Beyssac O, Duprat-Oualid S, Yamato P (2014) Thermal structure of a major crustal shear zone, the basal thrust in the Scandinavian Caledonides. Earth Planet Sci Lett 385:162–171. doi:10.1016/j.epsl.2013.10.038

    Article  Google Scholar 

  • Fossen H (1992) The role of extensional tectonics in the Caledonides of south Norway. J Struct Geol 14:1033–1046

    Article  Google Scholar 

  • Fossen H (1993) Structural evolution of the Bergsdalen nappes, Southwest Norway. Geol Sur Nor Bull 424:23–49

    Google Scholar 

  • Gee DG, Guezou J-C, Roberts D, Wolff FC (1985) The central-southern part of the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonian Orogen—Scandinavia and related areas, vol 1. Wiley, Chichester, pp 109–133

    Google Scholar 

  • Gee DG, Janak M, Majka J, Robinson P, van Roermund H (2012) Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision. Lithosphere 5:169–178. doi:10.1130/l220.1

    Article  Google Scholar 

  • Gee DG, Andréasson P-G, Li Y, Krill A (2016) Baltoscandian margin, Sveconorwegian crust lost by subduction during Caledonian collisional orogeny. GFF 139:36–51. doi:10.1080/11035897.2016.1200667

    Article  Google Scholar 

  • Glodny J, Kühn A, Austrheim H (2008) Geochronology of fluid-induced eclogite and amphibolite facies metamorphic reactions in a subduction-collision system, Bergen Arcs, Norway. Contrib Mineral Petrol 156:27–48. doi:10.1007/s00410-007-0272-y)

    Article  Google Scholar 

  • Hacker BR, Gans PB (2005) Continental collisions and the creation of ultrahigh-pressure terranes: petrology and thermochronology of nappes in the central Scandinavian Caledonides. Geol Soc Am Bull 117:117. doi:10.1130/b25549.1

    Article  Google Scholar 

  • Hacker BR, Andersen TB, Johnston S, Kylander-Clark ARC, Peterman EM, Walsh EO, Young D (2010) High-temperature deformation during continental-margin subduction & exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480:149–171. doi:10.1016/j.tecto.2009.08.012

    Article  Google Scholar 

  • Harper DAT, Bruton DL, Rasmussen CMØ (2008) The Otta brachiopod and trilobite fauna palaeogeography of Early Palaeozoic terranes and biotas across Baltoscandia. Fossils Strata 54:31–40

    Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. 6 edn. Springer, Berlin, Heidelberg

    Google Scholar 

  • Hövelmann J (2012) Carbonation reactions in ultramafic rocks: Experimental insights into physicochemical processes, microtexture evolution and reaction mechanisms. PhD Thesis, University of Oslo

  • Jakob J, Alsaif M, Corfu F, Andersen TB (2017a) Age and origin of thin discontinuous gneiss sheets in the distal domain of the magma-poor hyperextended pre-Caledonian margin of Baltica, southern Norway. J Geol Soc 174:557–571. doi:10.1144/jgs2016-049

    Article  Google Scholar 

  • Jakob J, Andersen TB, Boulvais P, Beyssac O (2017b) Scandian metamorphism of metapelites and serpentinites in the pre-Caledonian magma-poor hyperextended margin of Baltica. Nordic Geological Wintermeeting, Oslo

    Google Scholar 

  • Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean Example of the west Pyrenees. Tectonics 24. doi:10.1029/2008TC002406

  • Jamtveit B, Austrheim H (2010) Metamorphism: the role of fluids. Elements 6:153–158. doi:10.2113/gselements.6.3.153

    Article  Google Scholar 

  • Johannes W (1969) Siderit-Magnesit-Mischkristallbildung im System Mg2+–Fe2+–CO2– 3–Cl2– 2–H2O. Contrib Mineral Petrol 21:311–318

    Article  Google Scholar 

  • Jolivet L, Raimbourg H, Labrousse L, Avigad D, Leroy Y, Austrheim H, Andersen TB (2005) Softening trigerred by eclogitization, the first step toward exhumation during continental subduction. Earth Planet Sci Lett 237:532–547. doi:10.1016/j.epsl.2005.06.047

    Article  Google Scholar 

  • Kerrick DM, Connolly JAD (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26:375–378. doi:10.1130/0091-7613(1998)026<0375:Sooaro>2.3.Co;2

    Article  Google Scholar 

  • Kjelberg Ø (2015) Petrography, structure and metamorphism of the melange rocks below the Jotun Nappe in Stølsheimen, Central South Norway. Master’s Thesis, University of Oslo

  • Kolderup CF, Kolderup N-H (1940) Geology of the Bergen arc system, vol 20. Bergens Museums Skrifter, Bergen p. 137

    Google Scholar 

  • Kumpulainen RA, Hamilton MA, Söderlund U, Nystuen JP (2016) A new U-Pb baddeleyite age from the Ottfjället dolerite dyke swarm in the Scandinavian Caledonides—a minimum age for late Neoproterozoic glaciation in Baltica. Nordic Geological Wintermeeting, Helsinki,

  • Kvale A (1945) Petrologic and structural studies in the Bergsdalen quadrangle, Western norway, Part 1: petrography, vol 1. Bergens museums årbok, Bergen, p. 201

    Google Scholar 

  • Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28. doi:10.1029/2007tc002251

  • Lagabrielle Y, Bodinier J-L (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20:11–21. doi:10.1111/j.1365-3121.2007.00781.x

    Article  Google Scholar 

  • Leinonen S (2015) P-T-XCO2 pseudosection modelling of talc-magnesite soapstone. In: Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowsky P, Luino F (eds) Engineering geology for society and territory, vol 5. Urban Geology, Sustainable Planning and Landscape Exploitation. pp 247–252. doi:10.1007/978-3-319-09048-1_48

  • Lindahl I, Nilsson LP (2008) Geology of the soapstone deposits of the Linnajavri area, Hamarøy, Nordland, north Norwegian Caledonides. Geol Soc Geol Surv Nor Spec Publ 11: 19–35

    Google Scholar 

  • Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) 93 doi:10.1007/s00531-004-0394-7

  • Manatschal G, Froitzheim N, Rubenach M, Turrin BD (2001) The role of detachment faulting in the formation of an ocean–continent transition: insights from the Iberia Abyssal Plain. Geolo Soc Lond Spec Publ 187:405–428 doi:10.1144/gsl.sp.2001.187.01.20

    Article  Google Scholar 

  • Meert JG, Torsvik TH, Eide EA, Dahlgren S (1998) Tectonic significance of the Fen Province, S. Norway constraints from geochronology and paleomagnetism. J Geol 106:553–564

    Article  Google Scholar 

  • Melezhik VA, Heldal T, Roberts D, Gorokhov IM, Fallick AE (2000) Depositional environment and apparent age of the Fauske carbonate conglomerate, North Norwegian Caledonides. Geol Sur Nor Bull 436:147–168

    Google Scholar 

  • Melezhik VA, Gorokhov IM, Fallick AE, Roberts D, Kuznetsov AB, Zwaan KB, Pokrovsky BG (2002a) Isotopic stratigraphy suggests Neoproterozoic ages and Laurentian ancestry for high-grade marbles from the North-Central Norwegian Caledonides. Geol Mag 139:375–393. doi:10.1017/S0016756802006726

    Article  Google Scholar 

  • Melezhik VA, Roberts D, Gorokhov IM, Fallick AE, Zwaan KB, Kuznetsov AB, Pokrovsky BG (2002b) Isotopic evidence for a complex Neoproterozoic to Silurian rock assemblage in the North-Central Norwegian Caledonides. Precambrian Res 114:55–86. doi: 10.1016/S0301-9268(01)00218-2

    Article  Google Scholar 

  • Meresse F, Lagabrielle Y, Malavieille J, Ildefonse B (2012) A fossil ocean–continent transition of the Mesozoic Tethys preserved in the Schistes Lustrés nappe of northern Corsica. Tectonophysics 579:4–16. doi:10.1016/j.tecto.2012.06.013

    Article  Google Scholar 

  • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N (2012) Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics 31. doi:10.1029/2011tc002961

  • Nystuen JP, Andresen A, Kumpulainen RA, Siedlecka A (2008) Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes 31:35–43

    Google Scholar 

  • Osmundsen PT, Bakke B, Svendby AK, Andersen TB (2000) Architecture of the Middle Devonian Kvamshesten Group, western Norway sedimentary response to deformation above a ramp-flat extensional fault. Geol Soc Lond Spec Publ 180:503–535. doi: 10.1144/Gsl.Sp.2000.180.01.27

    Article  Google Scholar 

  • Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int J Earth Sci (Geol Rundsch) 98:1581–1597. doi:10.1007/s00531-008-0337-9)

    Article  Google Scholar 

  • Péron-Pinvidic G, Manatschal G (2010) From microcontinents to extensional allochthons: witnesses of how continents rift and break apart? Pet Geosci 16:189–197. doi:10.1144/1354-079309-903

    Article  Google Scholar 

  • Péron-Pinvidic G, Manatschal G, Osmundsen PT (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar Petrol Geol 43:21–47. doi:10.1016/j.marpetgeo.2013.02.002

    Article  Google Scholar 

  • Qvale H, Stigh J (1985) Ultramafic rocks in the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and related areas. Wiley, Chichester, pp 693–715

    Google Scholar 

  • Robinson P, Hollocher K, Roberts D, Harper DAT (2016) Bruton DL Caledonian speed test for mid Norway and New England. In: Geological Society of America, Annual General Meeting, Colorado

  • Root D, Corfu F (2011) U–Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the seve nappe complex, Scandinavian Caledonides. Contrib Mineral Petrol 163:769–788. doi:10.1007/s00410-011-0698-0

    Article  Google Scholar 

  • Rosenbaum J, Sheppard SMF (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150. doi: 10.1016/0016-7037(86)90396-0

    Article  Google Scholar 

  • Skelton ADL, Valley JW (2000) The relative timing of serpentinisation and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Planet Sci Lett 178:327–338. doi: 10.1016/S0012-821x(00)00087-X

    Article  Google Scholar 

  • Slagstad T et al. (2014) Tectonomagmatic evolution of the Early Ordovician suprasubduction-zone ophiolites of the Trondheim Region, Mid-Norwegian Caledonides. Geoll Soc Lond Spec Publ 390:541–561. doi: 10.1144/sp390.11

    Article  Google Scholar 

  • Slama J, Pedersen R-BS (2015) Zircon provenance of SW Caledonian phyllites reveals a distant Timanian sediment source. J Geol Soc 172:465–478. doi:10.1144/jgs2014-143

    Article  Google Scholar 

  • Strand T (1951) The Sel and Vågå map areas –Geology and Petrology of a part of the Caledonides of central southern Norway. Geol Sur Nor Bull 178:116

    Google Scholar 

  • Sturt BA, Ramsay DM, Neuman RB (1991) The Otta Conglomerate, the Vågåmo Ophiolite—further indications of early Ordovician Orogenesis in the Scandinavian Caledonides. Nor J Geol 71:107–115

    Google Scholar 

  • Sutra E, Manatschal G, Mohn G, Unternehr P (2013) Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14:2575–2597. doi:10.1002/ggge.20135

    Article  Google Scholar 

  • Svenningsen OM (2001) Onset of seafloor spreading in the Iapetus ocean at 608 Ma Precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res 110:241–254. doi: 10.1016/S0301-9268(01)00189-9

    Article  Google Scholar 

  • Taylor HJ, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher see District, West Germany and the Alnö District, Sweden. Geochim Cosmochim Acta 31:407–480

    Article  Google Scholar 

  • Tegner C, Andersen TB, Corfu F, Planke S, Kjøll HJ Torsvik TH (2016) The pre-Caledonian Large Igneous Province and the North Atlantic Wilson Cycle. In: European Geoscience Union General Assembly, Vienna, Austria, 17–22 April 2016

  • Torsvik TH, Cocks LRM (2005) Norway in space and time: a Centennial cavalcade. Nor J Geol 85:73-86w

    Google Scholar 

  • Torsvik TH, Rehnström EF (2003) The Tornquist Sea and Baltica–Avalonia docking. Tectonophysics 362:67–82. doi:10.1016/s0040-1951(02)00631-5

    Article  Google Scholar 

  • Torsvik TH et al (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40:229–258. doi: 10.1016/0012-8252(96)00008-6

    Article  Google Scholar 

  • Trønnes RG, Sundvoll B (1995) Isotopic composition, deposition ages and environments of Central Norwegian Caledonian marbles. Geol Surv Nor Bull 427:44–47

    Google Scholar 

  • Tullborg E-L, Larson SÅ, Björklund L, Samuelsson L, Stigh J (1995) Thermal evidence of Caledonide foreland, molasse sedimentation in Fennoscandia. Swedish Nuclear Fuel and Waste Managment Co., Gråbo

    Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: O'Neil JR, Taylor HP Jr., Valley JW (eds) Stable isotopes in high temperature geological processes, reviews in mineralogy, vol 16, chapt 13. pp 445–490

  • Veizer J et al (1999) 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. doi:10.1016/s0009-2541(99)00081-9

    Article  Google Scholar 

  • Vitale Brovarone A, Picatto M, Beyssac O, Lagabrielle Y, Castelli D (2014) The blueschist–eclogite transition in the Alpine chain: P–T paths and the role of slow-spreading extensional structures in the evolution of HP–LT mountain belts. Tectonophysics 615–616:96–121. doi:10.1016/j.tecto.2014.01.001

    Article  Google Scholar 

  • Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413:150–154. doi:10.1038/35093085

    Article  Google Scholar 

  • Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Can Mineral 15:459–488

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural History Museum of Oslo for generously providing samples from the Otta conglomerate and Annabelle Bernard for her help during the analytical work. Suggestions by Abigail Bull-Aller and Reidar Trønnes in improving the manuscript are greatly appreciated. We are grateful for the useful comments of Camille Clerc and Alberto Vitale-Brovarone and for the suggestions of two anonymous reviewers and Marco Scambelluri on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Jakob.

Ethics declarations

Funding

The Centre for Earth Evolution and Dynamics is funded by CoE-Grant 223272 from the Research Council of Norway. The project “Hyperextension in magma-poor and magma-rich domains along the pre-Caledonian passive margin of Baltica” is funded by research Grant 250327/F20 from the Research Council of Norway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakob, J., Boulvais, P. & Andersen, T.B. Oxygen and carbon isotope compositions of carbonates in a prominent lithologically mixed unit in the central South Norwegian Caledonides. Int J Earth Sci (Geol Rundsch) 107, 1445–1463 (2018). https://doi.org/10.1007/s00531-017-1551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1551-0

Keywords

Navigation