Skip to main content

Advertisement

Log in

Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic–early Jurassic tectonics associated with the Paleo-Tethys Ocean

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic–early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P–T data, and Ar–Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E–W-trending, ~2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and ~404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at ~0.7–1.1 GPa and ~400 °C. Our Ar–Ar dating of amphibole reveals rim-ward decreasing in age bands, including ~242.4–241.2 Ma, ≥202.6–196.8, and 192.9–189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang (~244–220 Ma); (2) syn-collisional slab-break off (223–202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth (~202.6–197 Ma); and (4) post-collision contraction and reburial (195.6–188.7 Ma).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agard P, Yamato P, Jolivet L (2009) Exhumation of oceanic blueschists and eclogites in subductionzones: timing and mechanisms. Earth Sci Rev 92(1–2):53–79

    Article  Google Scholar 

  • Bao PS, Xiao XC, Wang J, Li C, Hu K (1999) The blueschist belt in the Shuanghu region, Central-Northern Tibet and its tectonic implications. Acta Geologica Sinica 73(4):302–314 (in Chinese with English abstract)

    Google Scholar 

  • Beaumont C, Jamieson RA, Butler PJ (2009) Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett 287(1):116–129

    Article  Google Scholar 

  • Brueckner HK, Cuthbert SJ (2013) Extension, disruption, and translation of an orogenic wedge by exhumation of large ultrahigh-pressure terranes: examples from the Norwegian Caledonides. Lithesphere 5(3):277–289

    Article  Google Scholar 

  • Brun JP, Faccenna C (2008) Exhumation of high-pressure rocks driven by slab rollback. Earth Planet Sci Lett 272(1):1–7

    Article  Google Scholar 

  • Butler JP, Beaumont C, Jamieson RA (2013) The Alps 1: a working geodynamic model for burial and exhumation of (ultra)high-pressure rocks in Alpine-type orogens. Earth Planet Sci Lett 377–378(5):114–131

    Article  Google Scholar 

  • Chen WX, Wang J (2009) Correlation of Upper Triassic strata in Qiangtang Basin, north Tibet. Geol China 4(36):809–818

    Google Scholar 

  • Chen Z, Liu Y, Hodges KV (1990) The kangmar dome: a metamorphic core complex in southern Xizang (Tibet). Science 250(4987):1552–1556

    Article  Google Scholar 

  • Chen SM, Cheng LR, Wu SZ, Zhu TS (2009) Late Permian fusulinds from the Raggyorcaka Formation, northern Qiangtang, Tibet, China. Geol Bull China 28(12):1725–1729

    Google Scholar 

  • Dong YS, Li C (2009) Discovery of eclogite in the Guoganjianian Mountain, central Qiangtang area, northern Tibet, China. Geological Bulletin of China 28(9):1197–1200 (in Chinese with English abstract)

    Google Scholar 

  • Dong YS, Li C, Shi JR, Wang SY (2009) Retrograde metamorphism and tectonic emplacement of high pressure metamorphic belt in central Qiangtang Tibet. Acta PetrologicaSinica 25(9):2303–2309

    Google Scholar 

  • Duretz T, Gerya TV (2013) Slab detachment during continental collision: influence of crustal rheology and interaction with lithospheric delamination. Tectonophysic S 602(5):124–140

    Article  Google Scholar 

  • Duretz T, Gerya TV, May DA (2011) Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502(1–2):244–256

    Article  Google Scholar 

  • Duretz T, Gerya TV, Kaus BJP (2012) Thermomechanical modeling of slab eduction. J Geophys Res Atmos 117(117):1–17

    Google Scholar 

  • Fossen H (2016) Structural geology. Cambridge University Press, New York

    Google Scholar 

  • Forster MA, Lister GS (2004) The interpretation of 40Ar/39Ar apparent age spectra produced by mixing: application of the method of asymptotes and limits. J Struct Geol 26(2):287–305

    Article  Google Scholar 

  • Forster MA, Lister GS (2014) 40Ar/39Ar geochronology and the diffusion of 39Ar in phengite-muscovite intergrowths during step-heating experiments in vacuo. Geol Soc Lond (Special Publications) 378(1):117–135

    Article  Google Scholar 

  • Fu XG, Wang J, Tan FW (2010) The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): age and tectonic implications. Gondwana Res 17(1):135–144

    Article  Google Scholar 

  • Gao R, Chen C, Lu ZW (2013) New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics 606:160–170

    Article  Google Scholar 

  • Geng QR, Peng ZM, Zhang Z (2012) New advances in the study of Carboniferous-Permian paleontology in Guoganjianianshan, Rongma area of Qiangtang region, Tibetan Plateau. Geol Bull China 31(4):510–520

    Google Scholar 

  • Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 21(6):1–19

    Article  Google Scholar 

  • Harrison TM, Lovera OS (2014) The multi-diffusion domain model: past, present and future. The Geol Soc Lond 378(1):91–106

    Article  Google Scholar 

  • Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051

    Article  Google Scholar 

  • Hening A (1915) Eur Petrographic and Geologie Von Sudwest Tibet-Hedin S, Southern Tibet. Stockholm: Norater 5:220

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Miner Petrol 116(4):433–447

    Article  Google Scholar 

  • Hu PY, Li C, Yang HT, Zhang HB, Yu H (2010) Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China. Geol Bull China 29(12):1825–1832

    Google Scholar 

  • Jiang QY, Li C, Su L (2015) Carboniferous arc magmatism in the Qiangtang area, northern Tibet: zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications. J Asian Earth Sci 100:132–144

    Article  Google Scholar 

  • Kapp P, Yin A, Manning CE, Harrison TM (2003) Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22(4):1–22

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Lee J, Hacker BR, Dinklage WS (2000) Evolution of the Kangmar Dome, southern Tibet: structural, petrologic, and thermochronologic constraints. Tectonics 19(5):872–895

    Article  Google Scholar 

  • Li C (1987) The Longmucuo-Shuanghu-Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permian-Carboniferous system in northern Xizang, China. J Changchun Univ Earth Sci 17(2):155–166 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Chen LR, Hu K, Yang ZR, Hong YR (1995) Study on the Paleo-Tethys Suture Zone of Lungmu Co–Shuanghu, Tibet. Geological Publishing House, Beijing, p 131

  • Li C, Zhai QG, Dong YS, Huang XP (2006a) Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chin Sci Bull 51(9):1095–1100

    Article  Google Scholar 

  • Li C, Zhai QG, Chen W, Yu JJ, Huang XP (2006b) Ar-Ar chronometry of the eclogite from central Qiangtang area, Qinghai-Tibet Plateau. Acta Petrologica Sinica 22(12):2843–2849

    Google Scholar 

  • Li C, Huang XP, Zhai QG (2006c) The Longmu Co- Shuanghu- Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai—Tibet plateau. Earth Sci Front 13(4):136–147

    Google Scholar 

  • Li C, Zhai QG, Dong YS, Yu JJ, Huang XP (2007) Establishment of the Upper Triassic Wanghuling Fornation at Guoganjianian Mountain, Central Qiangtang, Qinghai-Yibet Plateau, and its significance. Geol Bull China 8(26):1003–1008

    Google Scholar 

  • Li ZH, Xu ZQ, Gerya TV (2011) Flat versus steep subduction: contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet Sci Lett 301(1–2):65–77

    Article  Google Scholar 

  • Li YL, Wang CS, Dai JG, Xu GQ, Hou YL, Li XH (2015a) Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review. Earth Sci Rev 143:36–61

    Article  Google Scholar 

  • Li JC, Zhao ZB, Zheng YL, Yuan GL, Liang X, Wang GH, Liu X (2015b) The magmatite evidences in southern Qiangtang for paleo-Tethys ocean subducting conllision: gangtang-co granites in Rongma, Tibet. Acta Petrologica Sinica 31(7):2078–2088

    Google Scholar 

  • Liang DY, Nie ZL, Guo TY (1983) Permo-carboniferous Gondwana-Tethys facies in southern Karakoran Ali, Xizang (Tibet). Earth Sci J China Univ Geosci 1(19):9–27

    Google Scholar 

  • Liang X, Wang GH, Yuan GL (2012) Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean. Gondwana Res 22(2):470–481

    Article  Google Scholar 

  • Liang X, Wang GH, Yuan GL (2015) Mesozoic and Cenozoic deformations in the Raggyorcaka area, Tibet: implications for the tectonic evolution of the North Qiangtang terrane. J Geol Soc 172:614–623

    Article  Google Scholar 

  • Liang X, Wang GH, Yang B, Ran H, Zheng YL, Du JX, Li LG (2017) Stepwise exhumation of the Triassic Lanling high-pressure metamorphic belt in Central Qiangtang, Tibet: insights from a coupled study of metamorphism, deformation, and geochronology. Tectonics 36:652–670

    Article  Google Scholar 

  • Lister GS, Davis GA (1989) The origin of metamorphic core complexes and detachment faults formed during tertiary continental extension in the Northern Colorado River Region, USA. J Struct Geol 11(1–2):65–94

    Article  Google Scholar 

  • Lister GS, Forster MA (2016) White mica 40Ar/39Ar age spectra and the timing of multiple episodes of high-P metamorphic mineral growth in the Cycladic eclogite-blueschist belt, Syros, Aegean Sea, Greece. J Metamorph Geol 34(5):401–421

    Article  Google Scholar 

  • Liu YJ (2016) Further discussion on the metallization of rutile in metamorphic process (As an example from a super large—scale rutile ore deposit of Dafu mountain, Hubei). Resour Environ Eng 30(S1):109–115

    Google Scholar 

  • Liu Y, Sun K (2008) Study on the Permian Paleophytogeographical Province in Xizang (Tibet). Geol Rev 54(3):289–295

    Google Scholar 

  • Liu JL, Davis GA, Lin Z (2005) The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of Eastern Liaoning. Korea and contiguous areas. Tectonophysics 407(1):65–80

    Article  Google Scholar 

  • Liu Y, Santosh M, Zhao ZB (2011) Evidence for Palaeo-Tethyan oceanic subduction within central Qiangtang. Lithos 127:39–53

    Article  Google Scholar 

  • Liu T, Zhai QG, Wang J, Su L, Kang Z, Suolang CL (2013) LA-ICP-MS zircon U-Pb age of high-grade metamorphic rocks from the Qiangtang Basin, northern Tibet, and its geological implications. Geol Bull China 32(11):1691–1703

    Google Scholar 

  • Lu ZW, Gao R, Li YT (2013) The upper crustal structure of the Qiangtang Basin revealed by seismic reflection data. Tectonophysics 606:171–177

    Article  Google Scholar 

  • Lu JP, Zhang N, Huang WH, Tang ZH, Li YK, Xu H, Zhou QE (2006) Characteristies and significance of the metamorphic minerals glaucophane-lawsonite assemblage in the Hongjishan area, north-centeal Qiangtang, northern Tibet, China. Geol Bull China 25(1):70–75 (in Chinese with English abstract)

    Google Scholar 

  • Lu L, Zhang KJ, Yan LL, JinX Zhang YX (2017) Was Late Triassic Tanggulagranitoid(central Tibet, western China) a product of melting of underthrust Songpan-Ganzi flysch sediments? Tectonics. doi:10.1002/2016TC004384

    Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Miner Petrol 96:212–224

    Article  Google Scholar 

  • Molina JF (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232:286–305

    Article  Google Scholar 

  • Pan GT, Wang LQ, Li RS (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14

    Article  Google Scholar 

  • Pullen A, Kapp P (2014) Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: insights from the Qiangtang metamorphic belt, central Tibet. Geol Soc Am 507:504–507

    Google Scholar 

  • Pullen A, Kapp P, Gehrels GE (2008) Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36(5):351–354

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130 °C and 2.2 GPa. Contrib Miner Petrol 163(5):877–895

    Article  Google Scholar 

  • Searle MP, Elliott JR, Phillips RJ (2011) Crustal–lithospheric structure and continental extrusion of Tibet. J Geol Soc 168(3):633–672

    Article  Google Scholar 

  • Tang XC, Zhang KJ (2014) Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications. Int Geol Rev 56(2):150–166

    Article  Google Scholar 

  • Villa IM, Hermann J, Müntener O, Trommsdorff V (2000) 39Ar−40Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contrib Miner Petrol 140(3):363–381

    Article  Google Scholar 

  • Wu CM, Pan Y, Wang K (2002) A Report on a Biotite-Calcic Hornblende GeothermometeR. Acta GeologicaSinica (English Edition) 76(1):126–131

    Google Scholar 

  • Wu H, Li C, Chen J (2015) Late Triassic tectonic framework and evolution of Central Qiangtang, Tibet, SW China. Lithosphere 8(2):L468.18

    Google Scholar 

  • Yang TN, Zhang HR, Liu YX (2011) Permo-Triassic arc magmatism in central Tibet: evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chem Geol 284(3):270–282

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geological evolution of the Himalayan-Tibetan Orogen. Ann Rev Earth Planet Sci Lett 28:211–263

    Article  Google Scholar 

  • Zhai QG, Jahn BM, Zhang RY (2011a) Triassic Subduction of the Paleo-Tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. J Asian Earth Sci 42:1356–1370

    Article  Google Scholar 

  • Zhai QG, Zhang RY, Jahn BM (2011b) Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P-T path. Lithos 125(1–2):173–189

    Article  Google Scholar 

  • Zhai QG, Jahn BM, Su L, Ernst RE, Wang KL, Zhang RY, WangJ Tang SH (2013) SHRIMP zircon U-Pb geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implication. Lithos 17:28–43

    Article  Google Scholar 

  • Zhang KJ (1998) The Changning-Menglian suture zone: a segment of the major Cathaysian-Gondwanan divide in Southeast Asia- Comment. Tectonophysics 290:319–321

    Article  Google Scholar 

  • Zhang KJ, Cai JX, Zhang YX (2006a) Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth Planet Sci Lett 245:722–729

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Li B (2006b) The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: evidence from geochemical comparison with the Jinsa suture. Geology 34:493–496

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Xia BD, He YB (2006c) Temporal variations of the Mesozoic sandstone composition in the Qiangtang block, northern Tibet (China): implications for provenance and tectonic setting. J Sediment Res 76:1035–1048

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Li B, Zhong LF (2007) Nd isotopes of siliciclastic rocks from Tibet, western China: constraints on the pre–Cenozoic tectonic evolution. Earth Planet Sci Lett 256:604–616

    Article  Google Scholar 

  • Zhang KJ, Zhang Y, Tang XC (2010) First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision. Terra Nova 20(4):302–308

    Article  Google Scholar 

  • Zhang KJ, Tang XC, Wang Y (2011) Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos 121:167–174

    Article  Google Scholar 

  • Zhang YC, Shen SZ, ZhaiQG Zhang YJ, Yuan DX (2015) Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area, northern Tibet: implications for the origin of the Qiangtang Metamorphic Belt. Geol Mag 153(3):1–7

    Google Scholar 

  • Zhao ZB, Bons PD, Wang GH (2014) Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet. Tectonophysics 623(7):52–66

    Article  Google Scholar 

  • Zhao ZB, Bons PD, Wang GH (2015) Tectonic evolution and high-pressure rock exhumation in the Qiangtang Terrane, Central Tibet. Solid Earth Discuss 7(1):329–367

    Article  Google Scholar 

  • Zheng YL, Wang GH, Guo ZW, Liang X, Yuan GL, Wang HD, Huang B, He YD (2015) The record of the Pan-African and the Indosinian tectono-thermal event in Qiangtang terrane, northern Tibet: evidence from geochemical characteristics and U-Pb geochronology of the metamorphic complex in Ejiumai area. Acta Petrologica Sinica 31(4):1137–1152

    Google Scholar 

  • Zhu TX, Zhang QY, Feng XT, Dong H, Yu YS, Li HR (2010) 40Ar/39Ar isotopic dating of the glaucophane in caiduo caka, central Qiangtang Area, Northern Tibet, China and its geological significance. Acta Geologica Sinica 84(10):1338–1456

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 41402177) and “the Fundamental Research Funds for the Central Universities”, (Grant No. 2652014004). Field work was supported by a project issued by the China Geological Survey (CGS): “Tectonic attributes of the basement of the South Qiangtang Mesozoic–Cenozoic basin” (Grant No. 1212011221115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liang, X., Wang, G. et al. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic–early Jurassic tectonics associated with the Paleo-Tethys Ocean. Int J Earth Sci (Geol Rundsch) 107, 757–776 (2018). https://doi.org/10.1007/s00531-017-1526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1526-1

Keywords

Navigation