Skip to main content
Log in

Early Cretaceous (ca. 100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: Product of slab break-off?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The lack of Early Cretaceous magmatic records with high-quality geochemical data in the southern Qiangtang subterrane has inhibited a complete understanding of the magmatic processes and geological evolution of central Tibet. In this study, we present zircon U–Pb ages, whole-rock geochemistry, and Sr–Nd–Pb and zircon Hf isotopic data for the newly discovered Moku pluton in the southern Qiangtang subterrane. Zircon U–Pb dating reveals that the Moku granites were emplaced in the Early Cretaceous (ca. 100 Ma) and are coeval with the hosted dioritic enclaves. The granites are slightly peraluminous and high-K calc-alkaline I-type granites and characterized by initial (87Sr/86Sr)i ratios of 0.70605–0.70658, negative ε Nd(t) values (−4.44 to −3.35), and Nd isotopic model ages of 1.19–1.29 Ga. The granites have a wide range of zircon ε Hf(t) values (−24.4 to 2.6) and concordant ratios of (206Pb/204Pb)t = 18.645–18.711, (207Pb/204Pb)t = 15.656–15.666, and (208Pb/204Pb)t = 38.751–38.836. The coeval dioritic enclaves are medium- to high-K calc-alkaline rocks with zircon ε Hf(t) values of −13.3 to +3.6. The geochemical signatures of the host granites and coeval dioritic enclaves indicate that the Moku pluton was most likely generated by partial melting of the ancient lower crust with contributions from mantle-derived melts. Our new data, together with other recently published data, indicate that the ca. 100 Ma magmatic rocks were derived from anatexis of the Qiangtang lower crust that mixed with upwelling asthenosphere materials in response to the slab break-off of the northward subduction of the Bangong–Nujiang oceanic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allègre CJ, Ben OD (1980) Nd–Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature 286:335–342

    Article  Google Scholar 

  • Allègre CJ, Courtillot V, Tapponnier P et al (1984) Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307:17–22

    Article  Google Scholar 

  • Andersen T (2002) Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly under plated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Bao PS, Xiao XC, Su L, Wang J (2007) Petrological, geochemical and chronological con-straints for the tectonic setting of the Dongco ophiolite in Tibet. Sci China Ser D 50(5):660–671

    Article  Google Scholar 

  • Belousova EA, Griffin WL, Shee SR, Jackson SE, O’Reilly SY (2001) Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Aust J Earth Sci 48:757–765

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sc Lett 148:243–258

    Article  Google Scholar 

  • Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD, Cole JW (2008) Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Sci Lett 268:312–324

    Article  Google Scholar 

  • Cawthorn RG, Brown PA (1976) A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation. J Geol 84:467–476

    Article  Google Scholar 

  • Chang QS, Zhu DC, Zhao ZD, Mo XX, Liu YS, Hu ZC (2011) Zircon U–Pb geochronology and Hf isotopes of the early cretaceous Rena-Co rhyolites from southern margin of Qiangtang, Tibet, and their implications. Acta Petrol Sin 27(7):2034–2044 (in Chinese with English abstract)

    Google Scholar 

  • Chappell BW (1999) Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551

    Article  Google Scholar 

  • Chappell BW, Simpson PR (1984) Source rocks of I- and S-Type granites in the Lachlan Fold Belt, Southeastern Australia [and Discussion]. Philos Trans R Soc A 310:693–707

    Article  Google Scholar 

  • Chappell BW, Stephens WE (1988) Origin of infracrustal (I-type) granite magmas. Trans R Soc Edinb Earth 79(2–3):71–86

    Article  Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth 83:1–26

    Article  Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Zircon Reviews of Mineralogy and Geochemistry 53, pp 113–143

  • Cherniak DJ, Hanchar JM, Watson EB (1997) Diffusion of tetravalent cations in zircon. Contrib Miner Pet 127:383–390

    Article  Google Scholar 

  • Chiaradia M (2009) Adakite-like magmas from fractional crystallization and melting assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chem Geol 265:468–487

    Article  Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Collins WJ, Richards SW (2008) Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 36:559–562

    Article  Google Scholar 

  • Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Deng J, Wang QF, Li GJ, Li CS, Wang CM (2014) Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res 26(2):419–437

    Article  Google Scholar 

  • Dewey JF, Shackleton RM, Chang C, Sun Y (1988) The tectonic evolution of the Tibetan plateau. Philos Trans R Soc A 327:379–413

    Article  Google Scholar 

  • Didier J (1984) The problem of enclaves in granitic rocks: a review of recent ideas on their origin. Science Press, Beijing, pp 137–144

    Google Scholar 

  • Didier J (1987) Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. Geol Rundsch 76:41–50

    Article  Google Scholar 

  • Dilek Y, Altunkaynak S (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab breakoff, and lithospheric tearing in an orogenic belt. Geol Soc Spec Publ 311:213–233

    Article  Google Scholar 

  • Duretz T, Gerya TV, May DA (2011) Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502:244–256

    Article  Google Scholar 

  • Geng QR, Zhang Z, Peng ZM, Guang JL, Zhu XP, Mao XC (2016) Jurassic–Cretaceous granitoids and related tectono-metallogenesis in the Zapug–Duobuza arc, western Tibet. Ore Geol Rev 77:163–175

    Article  Google Scholar 

  • Girardeau J, Marcoux J, Allègre CJ, Bassoullet JP, Tang YK, Xiao XC, Zhao YG, Wang XB (1984) Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature 307:27–31

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magmamixing, SE China: in situ analysis of Hf isotopes, Tongluand Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS, Yuan HL (2012) Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Res 21:88–99

    Article  Google Scholar 

  • Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L (2006) Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34:505–508

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in ARC magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  Google Scholar 

  • Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Dev Petrol 13. Elsevier, Amsterdam, pp 431–444

  • Holden P, Halliday AN, Stephens WE (1987) Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330:53–56

    Article  Google Scholar 

  • Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM, Sun QZ (2013) Contribution of mantle components within juvenile lower-crust to collisional zoneporphyry Cu systems in Tibet. Miner Depos 48:173–192

    Article  Google Scholar 

  • Jahn BM, Wu FY, Hong DW (2000) Important crustal growth in the Phanerozoic: isotopice vidence of granitoids from East-Central Asia. Proc Indian Acad Sci (Earth Planet Sci Lett) 109:5–20

    Google Scholar 

  • Kapp P, Yin A, Harrison TM, Ding L (2005) Cretaceous-tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Am Bull 117:865–878

    Article  Google Scholar 

  • Kapp P, DeCelles PG, Gehrels GE, Heizler M, Ding L (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull 119:917–932

    Article  Google Scholar 

  • Karsli O, Chen B, Aydin F, Sen C (2007) Geochemical and Sr–Nd–Pb isotopic compositions of the EoceneDölek and Sariçiçek Plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos 98:67–96

    Article  Google Scholar 

  • Karsli O, Dokuz A, Uysal I, Aydin F, Kandemir R, Wijbrans J (2010) Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114:109–120

    Article  Google Scholar 

  • Kaygusuz A, Aydincakir K (2009) Mineralogy, whole-rock and Sr–Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasigranitoids, Eastern Pontides, NE Turkey: evidence of magma mixing, mingling and chemical equilibration. Chem Erde-Geochem 69:247–277

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  • Lai SC, Qin JF (2008) Petrology and geochemistry of the granulite xenoliths from Cenozoic Qiangtang volcanic field: implication for the nature of the lower crust in the northern Tibetan plateau and the genesis of Cenozoic volcanic rocks. Acta Petrol Sin 24:325–336 (in Chinese with English abstract)

    Google Scholar 

  • Leier AL, Decelles PG, Kapp P, Gehrels GE (2007) Lower Cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. J Sediment Res 77:809–825

    Article  Google Scholar 

  • Li CN (2002) Comment on the magma mixing and their research. Geol Sci Technol Inf 21:49–54 (in Chinese with English abstract)

    Google Scholar 

  • Li XH, Li ZX, Zhou HW, Liu Y, Kinny PD (2002) U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of south China: implications for the initial rifting of Rodinia. Precambrian Res 113:135–154

    Article  Google Scholar 

  • Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ, Qi CS (2007) U-Pb zircon geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96:186–204

    Article  Google Scholar 

  • Li XH, Li WX, Wang XC, Li QL, Liu Y, Tang GQ (2009a) Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: in situ zircon Hf–O isotopic constraints. Sci China Ser D 39:872–887 (in Chinese with English abstract)

    Google Scholar 

  • Li JW, Zhao XF, Zhou MF, Ma CQ, de Souza ZS, Vasconcelos P (2009b) Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications. Contrib Miner Petrol 157:383–409

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Chen L (2011) Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: evidence from U-Pb and 40Ar/39Ar geochronology. J Asian Earth Sci 41:525–536

    Article  Google Scholar 

  • Li YL, He J, Wang CS, Santosh M, Dai JG, Zhang YX, Wei YS, Wang JG (2013a) Late Cretaceous K-rich magmatism in central Tibet: evidence for early elevation of the Tibetan plateau? Lithos 160–161:1–13

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Cao MJ, Chen L (2013b) Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu–Au deposit, central Tibet: evidence from U–Pb geochronology, petrochemistry and Sr–Nd–Hf–O isotope characteristics. Lithos 160–161:216–227

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Richards JP, Zhao JX, Cao MJ (2014a) Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate–felsic intrusions in central Tibet: petrogenetic and tectonic implications. Lithos 198–199:77–91

    Article  Google Scholar 

  • Li SM, Zhu DC, Wang Q, Zhao ZD, Sui QL, Liu SA, Liu D, Mo XX (2014b) Northward subduction of Bangong–Nujiang Tethys: insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos 205:284–297

    Article  Google Scholar 

  • Li YL, He J, Wang CS, Han ZP, Ma P, Xu M, Du KY (2015a) Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong–Nujiang Ocean? J Asian Earth Sci 104:69–83

    Article  Google Scholar 

  • Li YL, Wang CS, Dai JG, Xu GQ, Hou YL, Li XH (2015b) Propagation of the deformation and growth of the Tibetan–Himalayan orogen: a review. Earth Sci Rev 143:36–61

    Article  Google Scholar 

  • Li YL, He J, Han ZP, Wang CS, Ma PF, Zhou A, Liu SA, Xu M (2016a) Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction. Lithos 245:34–46

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Chen L (2016b) Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu–Au deposit, central Tibet: evidence from zircon U–Pb geochronology, petrochemistry and Sr–Nd–Pb–Hf isotope characteristics. Geol J 51:285–307

    Article  Google Scholar 

  • Liu W, Li FQ, Yuan SH, Zhang WP, Zhuo JW, Wang BD, Tang WQ (2010) Volcanic rock provenance of Zenong Group in Coqen area of Tibet: geochemistry and Sr–Nd isotopic constraint. Acta Pertrol Et Miner 29:367–376 (in Chinese with English abstract)

    Google Scholar 

  • Liu DL, Shi RD, Ding L, Huang QS, Zhang XR, Yue YH, Zhang LY (2015) Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: implications for the subduction of the Bangong–Nujiang Tethyan Ocean. Gondwana Res, Tibet. doi:10.1016/j.gr.2015.04.007

    Google Scholar 

  • Ma GL, Yue YH (2010) Cretaceous volcanic rocks in northern Lhasa Block: constraints on the tectonic evolution of the Gangdese Arc. Acta Petrol Et Miner 29:525–538 (in Chinese with English abstract)

    Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Mo XX, Hou ZQ, Niu YL, Dong GC, Qu X, Zhao ZD, Yang Z (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Article  Google Scholar 

  • Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14

    Article  Google Scholar 

  • Pearce JA, Mei HJ (1988) Volcanic rocks of the 1985 Tibet Geotraverse: lhasa to Golmud. Philo Trans R Soc A 327:169–201

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretations of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peccerillo A, Taylor DR (1976) Geochemistry of Eocene calcalkaline volcanic rocks from Kastamonu area, Northern Turkey. Contrib Miner Petrol 58:63–91

    Article  Google Scholar 

  • Pu W, Gao JF, Zhao KD, Ling HF, Jiang SY (2005) Separation method of Rb–Sr, Sm–Nd using DCTA and HIBA. J Nanjing Univ (Nature Sciences) 41:445–450 (in Chinese with English abstract)

    Google Scholar 

  • Qu XM, Xin HB (2006) Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China. Geol Bull China 25(7):792–799 (in Chinese with English abstract)

    Google Scholar 

  • Schneider W, Mattern F, Wang P, Li C (2003) Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone (Tibet): a reading cycle. Geol Rundsch 92:228–254

    Google Scholar 

  • Silva MMVG, Neiva AMR, Whitehouse MJ (2000) Geochemistry of enclaves and host granites from the Nelasarea, central Portugal. Lithos 50:153–170

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmasfrom common basaltic sources. Contrib Miner Petrol 148:635–661

    Article  Google Scholar 

  • Sui QL, Wang Q, Zhu DC, Zhao ZD, Chen Y, Santosh M, Hu ZC, Yuan HL, Mo XX (2013) Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: implications for the magmatic origin and crustal growth in a continent–continent collision zone. Lithos 168–169:144–159

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A (1996) Evaluation of a 202Pb–205Pb double spike for high precision lead isotope analysis. Geophys Monogr Ser 95:429–437

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granites: globules of hybrid magma quenched in a plutonic environment. Nature 309:438–443

    Article  Google Scholar 

  • von Blanckenburg F, Davis JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2000) Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: implications for crystal and magma mingling in S-type granites. Contrib Miner Petrol 139:227–239

    Article  Google Scholar 

  • Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ, Chen YW (2014) Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane: new constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos 208:202–219

    Article  Google Scholar 

  • Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji J, Liu D, Gallet S (2008) Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105:1–11

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Book  Google Scholar 

  • Wong A, Ton SYM, Wortel MJR (1997) Slab detachment in continental collision zones: an analysis of controlling parameters. Geophys Res Lett 24:2095–2098

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66:241–273

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Wu FY, Li XH, Zheng YF, Gao S (2007) Lu–Hf isotopic systematics and their applications in petrology. Acta Petrol Sin 23(2):185–220 (in Chinese with English abstract)

    Google Scholar 

  • Wyborn D, Chappell BW, James M (2001) Examples of convective fractionation in high temperature granites from the Lachlan Fold Belt. Aust J Earth Sci 48:531–541

    Article  Google Scholar 

  • Xin HB, Qu XM, Wang RJ, Liu HF, Zhao YY, Huang W (2009) Geochemistry and Pb, Sr, Nd isotopic features of ore-bearing porphyries in Bangong Lake porphyry copper belt, western Tibet. Miner Depos 28:785–792 (in Chinese with English abstract)

    Google Scholar 

  • Xu RH, Scharer U, Allègre CJ (1985) Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J Geol 93:41–57

    Article  Google Scholar 

  • Yang JH, Wu FY, Chuang SL, Simon A, Chu MF (2004) Multiple sources for the origin of granites: geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochim Cosmochim Acta 68:4469–4483

    Article  Google Scholar 

  • Yang JH, Wu FY, Liu XM (2007) Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong peninsula, east North China Craton: constraints from In-situ zircon U–Pb ages and Hf isotopes. Acta Petrol Sin 23:263–276 (in Chinese with English abstract)

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zhang YX (2007) Tectonic evolution of the middle-western Bangong–Nujiang suture, Tibet. Dissertation, Chinese academy of sciences (in Chinese with English abstract)

  • Zhang KJ, Tang XC (2009) Eclogites in the interior of the Tibetan plateau and their geodynamic implications. Chin Sci Bull 54:2556–2567

    Google Scholar 

  • Zhang KJ, Xia BD, Wang GM, Li YT, Ye HF (2004) Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geol Soc Am Bull 116:1202–1222

    Article  Google Scholar 

  • Zhang ZC, Dong SY, Huang H, Ma LT, Zhang DY, Zhang S, Xue CJ (2009) Geology and geochemistry of the Permian intermediate-acid intrusions in the southwestern Tianshan, Xinjiang, China: implications for petrogenesis and tectonics. Geol Bull China 28:27–1839 (in Chinese with English abstract)

    Google Scholar 

  • Zhang LL, Zhu DC, Zhao ZD, Dong GC, Mo XX, Guan Q, Liu M, Liu MH (2010) Petrogenesis of magmatism in the baerda region of Northern Gangdese, Tibet: constraints from geochemistry, geochronology and Sr–Nd–Hf isotopes. Acta Petrol Sin 26:1871–1888 (in Chinese with English abstract)

    Google Scholar 

  • Zhang LL, Zhu DC, Zhao ZD, Liao ZL, Wang LQ, Mo XX (2011) Early cretaceous granitoids in Xainza, Tibet: eVidence of slab break-off. Acta Petrol Sin 27:1938–1948 (in Chinese with English abstract)

    Google Scholar 

  • Zhang KJ, Zhang YX, Tang XC, Xia B (2012a) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci Rev 114:236–249

    Article  Google Scholar 

  • Zhang XQ, Zhu DC, Zhao ZD, Sui QL, Wang Q, Yuan SH, Hu ZC, Mo XX (2012b) Geochemistry, zircon U–Pb geochronology and in situ Hf isotope of the Maiga batholith in Coqen, Tibet: constraints on the petrogenesis of the Early Cretaceous granitoids in the central Lhasa Terrane. Acta Petrol Sin 28:1615–1634 (in Chinese with English abstract)

    Google Scholar 

  • Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH, Hou ZQ (2009) Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intro-continental subduction beneath southern Tibet. Lithos 113:190–212

    Article  Google Scholar 

  • Zhu DC, Pan GT, Mo XX, Wang LQ, Liao ZL, Zhao ZD, Dong GC, Zhou CY (2006a) Late jurassic-early cretaceous geodynamic setting in middle-northern Gangdese: new insights from volcanic rocks. Acta Petrol Sin 22:534–546 (in Chinese with English abstract)

    Google Scholar 

  • Zhu DC, Pan GT, Mo XX, Wang LQ, Zhao ZD, Liao ZL (2006b) Identification of the Mesozoic OIB-type basalts in central Qinghai-Tibetan Plateau: geochronology, geochemistry and their tectonic setting. Acta Geol Sin 80:1312–1328 (in Chinese with English abstract)

    Google Scholar 

  • Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS, Wu FY (2009a) Geochemical investigation of early cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chem Geol 268:298–312

    Article  Google Scholar 

  • Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY, Yang YH (2009b) Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: constraints from zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopes. Sci China Ser D 52:1223–1239

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC, Liu B (2009c) Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt-peridotite interaction? J Asian Earth Sci 34:298–309

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Article  Google Scholar 

  • Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA, Wang LQ (2016) Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 245:7–17

    Article  Google Scholar 

  • Zorpi MJ, Coulon C, Orisini JB (1991) Hybridization between felsic and mafic magma in calk-alkaline granitoids: a case study in northern Sardinia, Italy. Chem Geol 92:45–86

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank two reviewers for their constructive and helpful reviews. We also sincerely thank Jun Meng and Yuan Gao for their assistance in the field and their assistance with U–Pb dating analyses. We are grateful for helpful discussions with Jingen Dai and Zhidan Zhao. The research was financially supported by the National Natural Science Foundation of China (41572188 and 41172129), the National Key Project for Basic Research of China (Project 2012CB822000) and the China Geological Survey (1212011221103 and 1212011086037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, H., Wang, C. et al. Early Cretaceous (ca. 100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: Product of slab break-off?. Int J Earth Sci (Geol Rundsch) 106, 1289–1310 (2017). https://doi.org/10.1007/s00531-016-1391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1391-3

Keywords

Navigation