Skip to main content
Log in

Provenance and paleoweathering reconstruction of the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This is the first study presenting major and trace elemental data from the Mesoproterozoic Hongshuizhuang Formation shales in Yanshan basin, North China, in order to reconstruct its provenance and chemical weathering history. The shales are strongly depleted in Na2O and Sr and enriched in Y and transition metal elements relative to upper continental crust. Low Zr concentrations and various discriminant plots (e.g., Th/Sc–Zr/Sc and Al2O3–TiO2–Zr) indicate insignificant mineral sorting or recycling of these shales. The rocks show light rare earth element (REE) enrichment (La/YbCN = 3.99–6.92), flat heavy REE, and significantly negative Eu anomalies (Euan = 0.57–0.68) in chondrite-normalized REE patterns, similar to post-Archean Australian average shales. The fairly uniform REE patterns and trace element ratios indicate that the Hongshuizhuang Formation shales were derived from a felsic source area with granodiorite as the dominant contributor. Mixing calculations suggest a mixture of 30 % granite porphyry, 5 % basalt, and 65 % granodiorite as the possible source of the shales, also supporting that granodiorite was the predominant source. Intense chemical weathering of the source terrain is indicated by high values of the premetasomatized chemical index of alteration, plagioclase index of alteration, Rb/Sr, a strong positive correlation between TiO2 and Al2O3, depletion of CaO, Na2O, and Sr, and mineral compositions. Such strong chemical weathering suggests a warm and wet paleoclimate, perhaps due to high atmospheric CO2 and CH4 concentrations, and a near-equatorial location of the North China Craton in the Columbia supercontinent at 1.4 Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad I, Chandra R (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci 66:73–89

    Article  Google Scholar 

  • Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318

    Article  Google Scholar 

  • Asiedu DK, Dampare SB, Sakyi PA, Banoeng-Yakubo B, Osae S, Nyarko BJB, Manu J (2004) Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamondiferous field, southern Ghana: implications for provenance and crustal evolution at the Archean–Proterozoic boundary. Geochem J 38:215–228

    Article  Google Scholar 

  • Bauluz B, Mayayo MJ, Fernandez-Nieto C, Lopez JMG (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150

    Article  Google Scholar 

  • Boynton W (1983) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Chu X, Zhang T, Zhang Q, Lyons TW (2007) Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section, northern China: implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochim Cosmochim Acta 71:4668–4692

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Cox R, Lowe DR (1995) Controls on sediment composition on a regional scale: a conceptual review. J Sediment Res 65:1–12

    Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940

    Article  Google Scholar 

  • Cullers RL (1988) Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, USA. Lithos 21:301–314

    Article  Google Scholar 

  • Cullers RL (1994a) The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA. Chem Geol 113:327–343

    Article  Google Scholar 

  • Cullers RL (1994b) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL, Graf J (1983) Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 275–312

    Google Scholar 

  • Cullers RL, Chaudhuri S, Arnold B, Lee M, Wolf CW Jr (1975) Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochim Cosmochim Acta 39:1691–1703

    Article  Google Scholar 

  • Dai S, Jiang Y, Ward CR, Gu L, Seredin VV, Liu H, Zhou D, Wang X, Sun Y, Zou J, Ren D (2012) Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int J Coal Geol 98:10–40

    Article  Google Scholar 

  • Du L, Yang C, Wang W, Ren L, Wan Y, Wu J, Zhao L, Song H, Geng Y, Hou K (2013) Paleoproterozoic rifting of the North China Craton: geochemical and zircon Hf isotopic evidence from the 2137 Ma Huangjinshan A-type granite porphyry in the Wutai area. J Asian Earth Sci 72:190–202

    Article  Google Scholar 

  • Eriksson PG, Condie K, Tirsgaard H, Mueller W, Altermann W, Miall A, Aspler L, Catuneanu O, Chiarenzelli J (1998) Precambrian clastic sedimentation systems. Sed Geol 120:5–53

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Fedo CM, Eriksson KA, Krogstad EJ (1996) Geochemistry of shales from the Archean (~ 3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochim Cosmochim Acta 60:1751–1763

    Article  Google Scholar 

  • Feng R, Kerrich R (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochim Cosmochim Acta 54:1061–1081

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc 144:531–542

    Article  Google Scholar 

  • Floyd PA, Winchester JA, Park RG (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambr Res 45:203–214

    Article  Google Scholar 

  • Floyd PA, Leveridge BE, Franke W, Shail R, Dörr W (1990) Provenance and depositional environment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Germany. Geol Rundsch 79:611–626

    Article  Google Scholar 

  • Gabo JAS, Dimalanta CB, Asio MGS, Queaño KL, Yumul GP Jr, Imai A (2009) Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines): implications for provenance and geotectonic setting. Tectonophysics 479:111–119

    Article  Google Scholar 

  • Gao LZ, Zhang CH, Shi XY, Zhou HR, Wang ZQ, Song B (2007) A new SHRIMP age of the Xiamaling formation in the North China Plate and its geological significance. Acta Geol Sin Engl Ed 81:1103–1109

    Article  Google Scholar 

  • Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ, Liu YM (2008) Mesoproterozoic age for Xiamaling formation in North China Plate indicated by zircon SHRIMP dating. Chin Sci Bull 53:2665–2671

    Article  Google Scholar 

  • Garcia D, Coelho J, Perrin M (1991) Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). Eur J Mineral 3:401–414

    Article  Google Scholar 

  • Garver JI, Scott TJ (1995) Trace elements in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Cordillera. Geol Soc Am Bull 107:440–453

    Article  Google Scholar 

  • Gu XX, Liu JM, Zheng MH, Tang JX, Qi L (2002) Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. J Sediment Res 72:393–407

    Article  Google Scholar 

  • Hao SS, Gao YB, Zhang YC, Lu XS, Lu BZ, Wen XD, Dai JS (1990) Neoproterozoic-Mesoproterozoic petroleum geology in north China. Petroleum University Press, Dongying (in Chinese)

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sed Geol 55:319–322

    Article  Google Scholar 

  • Hayashi K, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of ∼ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61:4115–4137

    Article  Google Scholar 

  • Hou G, Santosh M, Qian X, Lister GS, Li J (2008) Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Res 14:395–409

    Article  Google Scholar 

  • Jian X, Guan P, Zhang W, Feng F (2013) Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: implications for provenance and weathering. Chem Geol 360–361:74–88

    Article  Google Scholar 

  • Kasting JF (2005) Methane and climate during the Precambrian era. Precambr Res 137:119–129

    Article  Google Scholar 

  • Kaufman AJ, Xiao S (2003) High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425:279–282

    Article  Google Scholar 

  • Kusky T, Santosh M (2009) The Columbia connection in North China. Geol Soc Lond Spec Publ 323:49–71

    Article  Google Scholar 

  • Li C, Peng PA (2003) Research on the molecular structural characters of kerogen in black shales of Hongshuizhuang Formation from Jixian section. Prog Nat Sci 13:57–63 (in Chinese)

    Google Scholar 

  • Li C, Peng P, Sheng G, Fu J, Yan Y (2003) A molecular and isotopic geochemical study of Meso-to Neoproterozoic (1.73–0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Res 125:337–356

    Article  Google Scholar 

  • Li HK, Lu SN, Li HM, Sun LX, Xiang ZQ, Geng JZ, Zhou HY (2009) Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geol Bull China 28:1396–1404 (in Chinese with English abstract)

    Google Scholar 

  • Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S, Yang FJ (2010) Zircon U–Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqin, Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petroloica Sin 26:2131–2140 (in Chinese with English abstract)

    Google Scholar 

  • Liu BQ, Fang J (1989) On petroleum source and maturation characteristics of the organic matter of Cambrian and middle-upper Proterozoic in Kuancheng region of northern Hebei Province. Exp Pet Geol 11:16–32 (in Chinese with English abstract)

    Google Scholar 

  • Liu BQ, Qin JZ, Li X (2000) Study on the properties of source rock and the origin of oil in middle-upper Proterozoic in Jibei depression. Mar Orig Pet Geol 5:35–45 (in Chinese)

    Google Scholar 

  • Lu SN (1992) Chronology of Jixian section of middle-upper Proterozoic strata. In: Lu SN, Li QB, Dai JX, Liu RQ (eds) Symposium of research on modern geology. Nanjing University Press, Nanjing, pp 122–129 (in Chinese)

    Google Scholar 

  • Luo QY, Zhong NN, Zhu L, Wang YN, Qin J, Qi L, Zhang Y, Ma Y (2013) Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China. Chin Sci Bull 58:1299–1309

    Article  Google Scholar 

  • Luo QY, Zhong NN, Qin J, Li KW, Zhang YQ, Wang YN, Ma L (2014) Thucholite in Mesoproterozoic shales from northern China: occurrence and indication for thermal maturity. Int J Coal Geol 125:1–9

    Article  Google Scholar 

  • Maynard JB, Sutton SJ, Robb LJ, Ferraz MF, Meyer FM (1995) A paleosol developed on hydrothermally altered granite from the hinterland of the Witwatersrand Basin: characteristics of a source of basin fill. J Geol 103:357–377

    Article  Google Scholar 

  • McCulloch MT, Wasserburg GJ (1978) Sm–Nd and Rb–Sr chronology of continental crust formation. Science 200:1003–1011

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • McLennan SM, Nance WB, Taylor SR (1980) Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochim Cosmochim Acta 44:1833–1839

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Spec Papers-Geol Soc Am 284:21–40

    Article  Google Scholar 

  • Mongelli G, Cullers RL, Muelheisen S (1996) Geochemistry of Late Cretaceous-Oligocenic shales from the Varicolori Formation, Southern Apennines, Italy: implications for mineralogical, grain-size control and provenance. Eur J Mineral 8:733–754

    Article  Google Scholar 

  • Mongelli G, Critelli S, Perri F, Sonnino M, Perrone V (2006) Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochem J 40:197–209

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    Article  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–542

    Article  Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. J Geol 105:173–192

    Article  Google Scholar 

  • Paikaray S, Banerjee S, Mukherji S (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan supergroup: implications on provenance, tectonics and paleoweathering. J Asian Earth Sci 32:34–48

    Article  Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich Proterozoic atmosphere? Geology 31:87–90

    Article  Google Scholar 

  • Peng T, Wilde SA, Fana W, Peng B (2013) Neoarchean siliceous high-Mg basalt (SHMB) from the Taishan granite-greenstone terrane, Eastern North China Craton: petrogenesis and tectonic implications. Precambr Res 228:233–249

    Article  Google Scholar 

  • Pettijohn FJ (1975) Sedimentary rocks, 3rd edn. Harper & Row, New York

    Google Scholar 

  • Qiao XF, Gao LZ, Zhang CH (2007) New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geol Bull China 26:503–509 (in Chinese with English abstract)

    Google Scholar 

  • Qin JZ (2005) Hydrocarbon source rocks in China. Science Press, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Qin J, Zhong NN, Qi W, Zhang YQ, Luo QY (2010) Organic Petrology of the Hongshuizhuang Formation in northern of North China. Oil Gas Geol 31:367–374 (in Chinese with English abstract)

    Google Scholar 

  • Qu YQ, Meng QR, Ma SX, Li L, Wu GL (2010) Geological characteristics of unconformities in Mesoproterozoic successions in the northern margin of North China Block and their tectonic implications. Earth Sci Front 17:112–127 (in Chinese with English abstract)

    Google Scholar 

  • Raza M, Dayal A, Khan A, Bhardwaj V, Rais S (2010) Geochemistry of lower Vindhyan clastic sedimentary rocks of Northwestern Indian shield: implications for composition and weathering history of Proterozoic continental crust. J Asian Earth Sci 39:51–61

    Article  Google Scholar 

  • Raza M, Khan A, Bhardwaj V, Rais S (2012) Geochemistry of Mesoproterozoic sedimentary rocks of upper Vindhyan Group, southeastern Rajasthan and implications for weathering history, composition and tectonic setting of continental crust in the northern part of Indian shield. J Asian Earth Sci 48:160–172

    Article  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562

    Article  Google Scholar 

  • Ronov AB, Migdisov AA (1971) Evolution of the chemical composition of the rocks in the shields and sediment cover of the Russian and North American platforms. Sedimentology 16:137–185

    Article  Google Scholar 

  • Schieber J (1992) A combined petrographical—geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geol Mag 129:223–237

    Article  Google Scholar 

  • Schoenborn WA, Fedo CM (2011) Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California. Chem Geol 285:231–255

    Article  Google Scholar 

  • Selvaraj K, Chen CTA (2006) Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. J Geol 114:101–116

    Article  Google Scholar 

  • Sinisi R, Mongelli G, Mameli P, Oggiano G (2014) Did the Variscan relief influence the Permian climate of Mesoeurope? Insights from geochemical and mineralogical proxies from Sardinia (Italy). Palaeogeogr Palaeoclimatol Palaeoecol 396:132–154

    Article  Google Scholar 

  • Spalletti LA, Queralt I, Matheos SD, Colombo F, Maggi J (2008) Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquen Basin, western Argentina): implications for provenance and tectonic setting. J S Am Earth Sci 25:440–463

    Article  Google Scholar 

  • Su W, Zhang S, Huff WD, Li H, Ettensohn FR, Chen X, Yang H, Han Y, Song B, Santosh M (2008) SHRIMP U–Pb ages of K-bentonite beds in the Xiamaling formation: implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton. Gondwana Res 14:543–553

    Article  Google Scholar 

  • Su W, Li H, Huff WD, Ettensohn FR, Zhang S, Zhou H, Wan Y (2010) SHRIMP U–Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chin Sci Bull 55:3312–3323

    Article  Google Scholar 

  • Sun SF (2000) Micropalaeoflora of the Hongshuizhuang Formation, Jixian, Tianjin. Prog Precambrian Res 23:165–173 (in Chinese with English abstract)

    Google Scholar 

  • Sun W, Zhou M, Yan D, Li J, Ma Y (2008) Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambr Res 167:213–236

    Article  Google Scholar 

  • SY/T 5163–2010 (National Standard of P. R. China) (2010) Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by X ray diffraction. 1–17 (in Chinese)

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Malden

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Wang TG (1980) The original nature and its petroleum geological significance of the oil seepage in Sinian Suberathem of the Yanshan area. Pet Explor Dev 7:34–52 (in Chinese)

    Google Scholar 

  • Wang TG, Han KY (2011) On Meso-Neoproterozoic primary petroleum resources. Acta Petrolei Sinica 11:1–7 (in Chinese with English abstract)

    Article  Google Scholar 

  • White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63:3277–3291

    Article  Google Scholar 

  • Yang J, Wu F, Wilde SA, Zhao G (2008) Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd–Hf isotopic evidence. Precambr Res 167:125–149

    Article  Google Scholar 

  • Young GM, Nesbitt HW (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J Sediment Res 68:448–455

    Article  Google Scholar 

  • Zaghloul MN, Critelli S, Perri F, Mongelli G, Perrone V, Sonnino M, Tucker M, Aiello M, Ventimiglia C (2010) Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of the Internal Rif Chain, Morocco. Sedimentology 57:312–350

    Article  Google Scholar 

  • Zhang S, Li Z-X, Evans ADD, Wu H, Li H, Dong J (2012) Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth Planet Sci Lett 353–354:145–155

    Article  Google Scholar 

  • Zhao G, Zhai M (2013) Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Res 23:1207–1240

    Article  Google Scholar 

  • Zhao C, Wang Z, Chi Y (1979) Stratigraphic lithology characteristics and sedimentary facies of Sinian Suberathem in the western of Yanshan Basin. J East China Pet Inst 1:1–42 (in Chinese)

    Google Scholar 

  • Zhao C, Li RF, Zhou J (1997) Sedimentology and petroleum geology of the Meso-Neoproterozoic in North China. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Zhao G, Wilde S, Cawood P, Lu L (1998) Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev 40:706–721

    Article  Google Scholar 

  • Zhao G, Wilde S, Cawood P, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambr Res 107:45–73

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde S, Li S (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (40472076) and Science Foundation of China University of Petroleum, Beijing (No. 2462014YJRC022). Thanks to Simon George of Macquarie University for improving the English, to Zhang Qiangbin, Zhu Lei, Zhu Wenjuan and Huang Wei for technical support and analytical advice for the ICM-MS analysis, to Dai Shifeng and Tian Heming of the China University of Mining and Technology (Beijing) for the XRF analysis, and to Xu Yajun at the China University of Geoscience and Sun Linhua at Suzhou University for helpful discussion. We are also grateful to Giovanni Mongelli, Victoria Ershova, as well as the topic editor Victoria Pease for their time and effort for giving valuable comments to improve the quality and English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Zhong, N., Wang, Y. et al. Provenance and paleoweathering reconstruction of the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China. Int J Earth Sci (Geol Rundsch) 104, 1701–1720 (2015). https://doi.org/10.1007/s00531-015-1163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1163-5

Keywords

Navigation