Skip to main content
Log in

U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Loess sediments in Austria deposited ca. 30–20 ka ago yield different zircon age signatures for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels (halfway between the Bohemian Massif and the Eastern Alps; sample A16). Cathodoluminescence (CL) imaging reveals both old, multistage zircons with complex growth histories and inherited cores, and young, first-cycle magmatic zircons. Paleoproterozoic ages between 2,200 and 1,800 Ma (K23 and S1), an age gap of 1,800–1,000 Ma for S1 and abundant Cadomian grains, indicate NW African/North Gondwanan derivation of these zircons. Also, A16 yields ages between 630 and 600 Ma that can be attributed to “Pan-African” orogenic processes. Significant differences are seen for the <500 Ma part of the age spectra with major age peaks at 493–494 and 344–335 Ma (K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial ɛHf signatures (−25 to −10, except one grain with +9.4) implying zircon crystallization from magmas derived by recycling of older continental crust. Hf isotopic compositions of 330- to 320-Ma-old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and intermediate granitoids. Rather, all the data suggest strong contributions of eroded local rocks (South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif (K23 and S1) and sourcing of zircons from sediment donor regions in the Eastern Alps for loess at Wels (A16). We tentatively infer primary fluvial transport and secondary eolian reworking and re-deposition of detritus from western/southwestern directions. Finally, our data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks, rather than Paleowind directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleinikoff JN, Muhs DR, Sauer RR, Fanning CM (1999) Late Quaternary loess in northeastern Colorado, II: Pb isotopic evidence for the variability of loess sources. Geol Soc Am Bull 111:1876–1883

    Google Scholar 

  • Aleinikoff JN, Muhs DR, Bettis EA III, Johnson WC, Fanning CM, Benton R (2008) Isotopic evidence for the diversity of late Quaternary loess in Nebraska: glaciogenic and nonglaciogenic sources. Geol Soc Am Bull 120:1362–1377

    Google Scholar 

  • Amelin YV, Lee DC, Halliday AN (2000) Early–middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64:4205–4225

    Google Scholar 

  • Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270

    Google Scholar 

  • Augustsson C, Münker M, Bahlburg H, Fanning CM (2006) Provenance of Late Palaeozoic metasediments of the SW South American Gondwana margin from combined U–Pb ages and Hf isotope compositions of single detrital zircons. J Geol Soc Lond 163:983–995

    Google Scholar 

  • Bahlburg H, Vervoort JD, Du Frane SA, Bock B, Augustsson C, Reimann C (2009) Timing of crust formation and recycling in accretionary orogens: insights learned from the western margin of South America. Earth Sci Rev 97:215–241

    Google Scholar 

  • Bahlburg H, Vervoort JD, Du Frane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17:223–235

    Google Scholar 

  • Beck-Mannagetta P (1964) Geologische Übersichtskarte der Republik Österreich. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M, Costello DK, Young RW, Feely RA, Breland JA, Bernstein RE, Greco AM (1988) Long-range transport of giant mineral aerosol particles. Nature 336:568–571

    Google Scholar 

  • Bodet F, Schärer U (2000) Evolution of the SE-Asian continent from U–Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim Cosmochim Acta 64:2067–2091

    Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Google Scholar 

  • Brunnacker K, Fink J, Razirad M, Tillmanns W (1979) Der Hollabrunner Schotter östlich von Krems, Niederösterreich. Zeitschrift der Deutschen Geologischen Gesellschaft 130:303–322

    Google Scholar 

  • Buggle B, Glaser B, Zöller L, Hambach U, Markovic S, Glaser I, Gerasimenko N (2008) Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quatern Sci Rev 27:1058–1075

    Google Scholar 

  • Cawood P, Nemchin A, Freeman M, Sircombe K (2003) Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet Sci Lett 210:259–268

    Google Scholar 

  • Cesare B, Rubatto D, Hermann J, Barzi L (2002) Evidence for Late Carboniferous subduction type magmatism in mafic–ultramafic cumulates of the SW Tauern window (Eastern Alps). Contrib Miner Petrol 142:449–464

    Google Scholar 

  • Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17:1567–1574

    Google Scholar 

  • Cilek V (2001) The loess deposits of the Bohemian Massif: silt provenance, palaeometeorology and loessification processes. Quatern Int 76(77):123–128

    Google Scholar 

  • Condie KC, Beyer E, Belousova EA, Griffin WL, O’Reilly SY (2005) U–Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambr Res 139:42–100

    Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in mineralogy and geochemistry, vol 53, Mineralogical Society of America and Geochemical Society, pp 469–500

  • Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massiv, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153

    Google Scholar 

  • Dickinson W (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet Sci Lett 275:80–92

    Google Scholar 

  • Egal E, Thiéblemont D, Lahondère D, Guerrot C, Costea CA, Iliescu D, Delor C, Goujou J-C, Lafon JM, Tegyey M, Diaby S, Kolié P (2002) Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kénéma-Man domain (Guinea, West African Craton). Precambr Res 117:57–84

    Google Scholar 

  • Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implications of U–Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria). Int J Earth Sci 88:496–512

    Google Scholar 

  • Eichhorn R, Loth G, Höll R, Finger F, Schermaier A, Kennedy A (2000) Multistage Variscan magmatism in the Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contrib Miner Petrol 139:418–435

    Google Scholar 

  • Eichhorn R, Loth G, Kennedy A (2001) Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U–Pb SHRIMP zircon data. Contrib Miner Petrol 142:147–162

    Google Scholar 

  • Einwögerer T, Händel M, Neugebauer-Maresch C, Simon U, Steier P, Teschler-Nicola M, Wild EM (2009) 14C dating of the Upper Paleolithic site at Krems-Wachtberg, Austria. Radiocarbon 51:847–855

    Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America and Geochemical Society, pp 277‒303

  • Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen TH, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom 23:955–961

    Google Scholar 

  • Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28

    Google Scholar 

  • Fink J (1961) Die Gliederung des Jungpleistozäns in Österreich. Mitteilungen der Geologischen Gesellschaft 54:1–25

    Google Scholar 

  • Fink J, Kukla GJ (1977) Pleistocene climates in Central Europe: at least 17 interglacials after the Olduvai Event. Quatern Res 7:363–371

    Google Scholar 

  • Fisher CM, Hanchar JM, Samson SD, Dhuime B, Blichert-Toft J, Vervoort JD, Lam R (2011) Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis. Chem Geol 286:32–47

    Google Scholar 

  • Florineth D, Schlüchter Ch (2000) Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quatern Res 54:295–308

    Google Scholar 

  • Frank Ch, Nagel D, Rabeder G (1997) Chronologie des österreichischen Plio-Pleistozäns. In: Döppes D, Rabeder G (eds) Pliozäne und pleistozäne Faunen Österreichs. Ein Katalog der wichtigsten Fossilfundstellen und ihrer Faunen. Mitt. Komm. Quartärforsch. Österr. Akad. Wiss., vol 10. Wien, pp 359–374

  • Friedl G, Finger F, Paquette J-L, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823

    Google Scholar 

  • Friedl G, Cooke RA, Finger F, McNaughton NJ, Fletcher IR (2011) Timing of Variscan HP-HT metamorphism in the Moldanubian Zone of the Bohemian Massif: U–Pb SHRIMP dating on multiply zoned zircons from a granulite from the Dunkelsteiner Wald Massif, Lower Austria. Mineral Petrol 102:63–75

    Google Scholar 

  • Gallet S, Jahn B, Van Vliet Lanoë B, Dia A, Rossello E (1998) Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet Sci Lett 156:157–172

    Google Scholar 

  • Gebauer D, Friedl G (1993) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian zone of the southern Bohemian massif, NE-Austria): evidence from ion-microprobe (SHRIMP)-dating of zircon. Eur J Mineral 5:115

    Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons; comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany. Earth Planet Sci Lett 249:47–61

    Google Scholar 

  • Gerdes A, Wörner G, Finger F (1996) Mantle sources in Hercynian granitoids? A trace element and isotope study. J Conf Abstr 1:201

    Google Scholar 

  • Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53–54

    Google Scholar 

  • Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr Res 131:231–282

    Google Scholar 

  • Griffin WL, Pearson NJ, Belousova EA, Saeed A (2006) Comment: Hf-isotope heterogeneity in zircon 91500. Chem Geol 233:358–363

    Google Scholar 

  • Haase D, Fink J, Haase G, Ruske R, Pecsi M, Richter H, Altermann M, Jäger KD (2007) Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quatern Sci Rev 26:1301–1312

    Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Miner Petrol 84:66–72

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Google Scholar 

  • Hietpas J, Samson S, Moecher D, Chakraborty S (2011) Enhancing tectonic and provenance information from detrital zircon studies: assessing terrane-scale sampling and grain-scale characterization. J Geol Soc Lond 168:309–318

    Google Scholar 

  • Hoinkes G, Koller F, Demény A, Schuster R, Miller C, Thöni M, Kurz W, Krenn K, Walter F (2010) Metamorphism in the Eastern Alps. Acta Miner Petrogr Field Guide Ser 1:1–47

    Google Scholar 

  • Howard KE, Hand M, Barovich KM, Reid A, Wade BP, Belousova EA (2009) Detrital zircon ages: improving interpretation via Nd and Hf isotopic data. Chem Geol 262:277–292

    Google Scholar 

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments, geological society of America special paper 284, Boulder, pp 1‒20

  • Kebede T, Klötzli U, Kosler J, Skiöld T (2005) Understanding pre-Variscan and Variscan basement components of the central Tauern Window, Eastern Alps (Austria): constraints from new single zircon U–Pb geochronology. Int J Earth Sci 94:336–353

    Google Scholar 

  • Kemp AIS, Foster GL, Scherstén A, Whitehouse MJ, Darling J, Storey C (2009) Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICPMS, with implications for the crustal evolution of Greenland and the Himalayas. Chem Geol 261:244–260

    Google Scholar 

  • Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America and Geochemical Society, pp 327‒341

  • Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg graniodiorite, South Bohemian Massif, Austria. Mineral Petrol 58:197–214

    Google Scholar 

  • Klötzli US, Frank W, Scharbert S, Thöni M (1999) The evolution of the SE Bohemian Massif based on geochronological data: a review. Jahrbuch der Geologischen Bundesanstalt 141:377–394

    Google Scholar 

  • Klötzli US, Koller F, Scharbert S, Höck V (2001) Cadomian lower-crustal contributions to Variscan granite petrogenesis (South Bohemian Pluton, Austria): constraints from zircon typology and geochronology, whole-rock, and feldspar Pb–Sr isotope systematics. J Petrol 42:1621–1642

    Google Scholar 

  • Klötzli U, Klötzli E, Günes Z, Košler J (2009) External accuracy of laser ablation U–Pb zircon dating: results from a test using five different reference zircons. Geostand Geoanal Res 33:5–15

    Google Scholar 

  • Klötzli-Chowanetz E, Klötzli U, Koller F (1997) Lower Ordovician migmatisation in the Ötztal crystalline basement (Eastern Alps, Austria): linking U–Pb and Pb–Pb dating with zircon morphology. Schweiz Mineral Petrogr Mitt 77:315–324

    Google Scholar 

  • Košler J, Konopásek J, Sláma J, Vrána S (2014) U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc Lond 171:83–95

    Google Scholar 

  • Krogh TE (1982) Improved accuracy of U–Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim Cosmochim Acta 46:631–635

    Google Scholar 

  • Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U–Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Miner Petrol 99:257–266

    Google Scholar 

  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA–ICP–MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Google Scholar 

  • Lisá L (2004) Exoscopy of Moravian eolian sediments. Bull Geosci 79:177–182

    Google Scholar 

  • Lisá L, Uher P (2006) Provenance of Würmian loess and loess-like sediments of Moravia and Silesia (Czech Republic): a study of zircon typology and cathodoluminescence. Geol Carpath 57:397–403

    Google Scholar 

  • Lisá L, Buriánek D, Uher P (2009) New approach to garnet redistribution during aeolian transport. Geol Q 53:333–340

    Google Scholar 

  • Lomax J, Fuchs M, Preusser F, Fiebig M (2014) Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quatern Int 351:88–97

    Google Scholar 

  • Ludwig KR (2008) User’s manual for Isoplot 3.70: a geochronological toolkit for Microsoft® Excel. Berkeley Geochronology Center Special Publication No 4, USA, p 76

  • Malusa MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107

    Google Scholar 

  • Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, Strogen D, Whitham AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett 312:164–175

    Google Scholar 

  • Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23:661–665

    Google Scholar 

  • Miller C, Konzett J, Tiepolo M, Armstrong RA, Thöni M (2007) Jadeite-gneiss from the Eclogite Zone, Tauern Window, Eastern Alps, Austria: metamorphic, geochemical and zircon record of a sedimentary protolith. Lithos 93:68–88

    Google Scholar 

  • Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet Sci Lett 247:252–266

    Google Scholar 

  • Nehyba S, Roetzel R (2004) The Hollabrunn–Mistelbach formation (Upper Miocene, Pannonian) in the Alpine-Carpathian Foredeep and the Vienna basin in lower Austria—an example of a Coarse-grained Fluvial System. Jahrbuch des Geologischen Bundesanstalt 144:191–221

    Google Scholar 

  • Nemchin AA, Cawood PA (2005) Discordance of the U–Pb system in detrital zircons: implication for provenance studies of sedimentary rocks. Sed Geol 182:143–162

    Google Scholar 

  • Neubauer F, Klötzli U, Poscheschnik P (2001) Two stages of Cadomian magmatism in the Alps recorded in Late Ordovician sandstones of the Carnic Alps: results from zircon Pb/Pb evaporation dating. 21st IAS meeting of sedimentology, pp 126–127

  • Neubauer F, Frisch W, Hansen BT (2002) Early Palaeozoic tectonothermal events in basement complexes of the eastern Graywacke Zone (Eastern Alps): evidence from U–Pb zircon data. Int J Earth Sci 91:775–786

    Google Scholar 

  • Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Miner Petrol 78:279–297

    Google Scholar 

  • Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222

    Google Scholar 

  • Preusser F, Fiebig M (2009) European Middle Pleistocene loess chronostratigraphy: some considerations based on evidence from the Wels site, Austria. Quatern Int 198:37–45

    Google Scholar 

  • Pullen A, Kapp P, McCallister AT, Chang H, Gehrels GE, Garzione CN, Heermance RV, Ding L (2011) Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39:1031–1034

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Miner Petrol 73:207–220

    Google Scholar 

  • Pye K (1995) The nature, origin and accumulation of loess. Quatern Sci Rev 14:653–667

    Google Scholar 

  • Reitner JM (2007) Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quatern Int 164–165:64–84

    Google Scholar 

  • Renssen H, Kasse C, Vandenberghe J, Lorenz SJ (2007) Weichselian Late Pleniglacial surface winds over northwest and central Europe: a model-data comparison. J Quat Sci 22:281–293

    Google Scholar 

  • Richter S, Goldberg SA, Mason PB, Traina AJ, Schwieters JB (2001) Linearity tests for secondary electron multipliers used in isotope ratio mass spectrometry. Int J Mass Spectrom 206:105–127

    Google Scholar 

  • Samson SD, D’Lemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc Lond 162:65–71

    Google Scholar 

  • Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. In: Harley SL, Kelly NM (eds) Zircon: tiny but timely, Elements, vol 3. Mineralogical Society of America (ISSN 1811-5209), pp 19‒24

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117

    Google Scholar 

  • Shao Y (2009) Physics and modelling of wind erosion. In: Atmospheric and oceanographic sciences library, vol 37. Springer, Netherlands. ISBN 978-1-4020-8894-0. http://dx.doi.org/10.1007/978-1-4020-8895-7

  • Siebel W, Chen F (2010) Zircon Hf isotope perspective on the origin of granitic rocks from eastern Bavaria, SW Bohemian Massif. Int J Earth Sci 99:993–1005

    Google Scholar 

  • Siebel W, Thiel M, Chen F (2006) Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). Mineral Petrol 86:45–62

    Google Scholar 

  • Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites in the south-western Bohemian Massif and their record of emplacement: constraints from zircon 207Pb/206Pb chronology and geochemistry. J Petrol 49:1853–1872

    Google Scholar 

  • Siebel W, Shang CK, Thern E, Danišík M, Rohrmüller J (2012) Zircon response to high-grade metamorphism as revealed by U–Pb and cathodoluminescence studies. Int J Earth Sci 101:2105–2123

    Google Scholar 

  • Siegesmund S, Heinrichs T, Romer RL, Doman D (2007) Age constraints on the evolution of the Austroalpine basement to the south of the Tauern Window. Int J Earth Sci 96:415–432

    Google Scholar 

  • Sláma J, Košler J (2012) Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochem Geophys Geosyst 13:Q05007. doi:10.1029/2012GC004106

    Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Google Scholar 

  • Smalley I, O’Hara-Dhand K, Wint J, Machalett B, Jary Z, Jefferson I (2009) Rivers and loess: the significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quatern Int 198:7–18

    Google Scholar 

  • Söderlund U, Patchett JP, Vervoort JD, Isachsen C (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martínez Catalán JR, Hatcher RD Jr, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement, Geological society of America special paper, vol 364, pp 263–280

  • Stevens T, Palk C, Carter A, Lu H, Clift PD (2010) Assessing the provenance of loess and desert sediments in northern China using U–Pb dating and morphology of detrital zircons. Geol Soc Am Bull 122:1331–1344

    Google Scholar 

  • Stevens T, Carter A, Watson TP, Vermeesch P, Andó S, Bird AF, Lu H, Garzanti E, Cottam MA, Sevastjanova I (2013) Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quatern Sci Rev 78:355–368

    Google Scholar 

  • Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141:49–65

    Google Scholar 

  • Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598

    Google Scholar 

  • Teipel U,·Eichhorn R,·Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for upper Vendian and lower ordovician magmatism. Int J Earth Sci 93:782‒801

  • Terhorst B, Ottner F, Wriessnig K (2012) Weathering intensity and pedostratigraphy of the Middle to Upper Pleistocene loess/palaeosol sequence of Wels-Aschet (Upper Austria). Quatern Int 265:142–154

    Google Scholar 

  • Thiel C, Buylaert J-P, Murray A, Terhorst B, Hofer I, Tsukamoto S, Frechen M (2010) Luminescence dating of the Stratzing loess profile (Austria)—testing the potential of an elevated temperature post-IR IRSL protocol. Quatern Int 234:23–31

    Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153

    Google Scholar 

  • Újvári G, Varga A, Balogh-Brunstad Z (2008) Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quatern Res 69:421–437

    Google Scholar 

  • Újvári G, Varga A, Ramos FC, Kovács J, Németh T, Stevens T (2012) Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U–Pb ages in tracking dust provenance: an example from loess of the Carpathian Basin. Chem Geol 304–305:83–96

    Google Scholar 

  • Újvári G, Klötzli U, Kiraly F, Ntaflos T (2013) Towards identifying the origin of metamorphic components in Austrian loess: insights from detrital rutile chemistry, thermometry and U–Pb geochronology. Quatern Sci Rev 75:132–142

    Google Scholar 

  • van Husen D (1981) Geologisch-sedimentologische Aspekte im Quartär von Österreich. Mitteilungen der Geologischen Gesellschaft 74(75):197–230

    Google Scholar 

  • van Husen D (2000) Geological processes during the Quaternary. Mitteilungen der Geologischen Gesellschaft 92:135–156

    Google Scholar 

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451

    Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194

    Google Scholar 

  • Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R, Downes H (2000) Hf–Nd isotopic evolution of the lower crust. Earth Planet Sci Lett 181:115–129

    Google Scholar 

  • Vervoort JD, Patchett PJ, Söderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICPMS. Geochem Geophys Geosyst 5:Q11002. doi:10.1029/2004GC000721

    Google Scholar 

  • Veselá P, Söllner F, Finger F, Gerdes A (2011) Magmato-sedimentary Carboniferous to Jurassic evolution of the western Tauern window, Eastern Alps (constraints from U–Pb zircon dating and geochemistry). Int J Earth Sci 100:993–1027

    Google Scholar 

  • von Quadt A (1992) U–Pb zircon and Sm-Nd isotope geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contrib Miner Petrol 110:57–67

    Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Trans R Soc Edinb Earth Sci 87:43–56

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Weber B, Scherer EE, Martens UK, Mezger K (2012) Where did the lower Paleozoic rocks of Yucatan come from? A U–Pb, Lu–Hf, and Sm–Nd isotope study. Chem Geol 312–313:1–17

    Google Scholar 

  • Wendt JI, Kröner A, Fiala J, Todt W (1994) U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from South Bohemia, Czech Republic. J Geol Soc 151:83–90

    Google Scholar 

  • Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies. Chem Geol 160:201–224

    Google Scholar 

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195

    Google Scholar 

  • Xiao G, Zong K, Li G, Hu Z, Dupont-Nivet G, Peng S, Zhang K (2012) Spatial and glacial–interglacial variations in provenance of the Chinese Loess Plateau. Geophys Res Lett 39:L20715. doi:10.1029/2012GL053304

    Google Scholar 

Download references

Acknowledgments

This research was supported through a postdoc fellowship to GÚ provided by the Stipendiumstiftung der Republik Österreich (ICM-2010-00919, ICM-2010-03401) and the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (GÚ). The authors are especially grateful to Christine Neugebauer-Maresch and her research group at the Academy of Science of Austria, as well as Markus Fiebig and Franz Ottner for providing samples and help with the field work. Insightful and constructive comments made by the two reviewers (G. Meinhold and T. Stevens) improved this paper substantially. Editorial handling by W.-C. Dullo is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Újvári.

Electronic supplementary material

Appendix

Appendix

Uncertainty propagation for 176Hf/177Hft, zircon (or initial 176Hf/177Hfzircon)

The 176Hf/177Hf composition of zircon at the time of crystallization (i.e., initial 176Hf/177Hfzircon or 176Hf/177Hft,zircon) is calculated as

$$D_{t} = D_{\text{m}} - P_{\text{m}} ({\text{e}}^{\lambda t} - 1),$$
(1)

where D t  = 176Hf/177Hf t,zircon, D m = 176Hf/177Hfzircon-measured, P m = 176Lu/177Hfzircon-measured, λ = λ 176Lu = 1.867 ± 0.008 × 10−11 a−1 (Söderlund et al. 2004) and t is the crystallization age of zircon.

Using the law of propagation of uncertainty, the combined standard uncertainty for D t is given by

$$\sigma_{{D_{t} }}^{2} = \left( {\frac{{\partial D_{t} }}{{\partial D_{\text{m}} }}\sigma_{{D_{\text{m}} }} } \right)^{2} + \left( {\frac{{\partial D_{t} }}{{\partial P_{\text{m}} }}\sigma_{{P_{\text{m}} }} } \right)^{2} + \left( {\frac{{\partial D_{t} }}{\partial \lambda }\sigma_{\lambda } } \right)^{2} + \left( {\frac{{\partial D_{t} }}{\partial t}\sigma_{t} } \right)^{2}$$
(2)

Since

$$\frac{{\partial D_{t} }}{{\partial D_{\text{m}} }} = 1$$
(3)
$$\frac{{\partial D_{t} }}{{\partial P_{\text{m}} }} = {\text{e}}^{\lambda t} - 1$$
(4)
$$\frac{{\partial D_{t} }}{\partial \lambda } = ({\text{e}}^{\lambda t} - 1)P_{\text{m}} t$$
(5)
$$\frac{{\partial D_{t} }}{\partial t} = ({\text{e}}^{\lambda t} - 1)P_{\text{m}} \lambda,$$
(6)

the combined uncertainty of D t  = 176Hf/177Hf t,zircon is

$$\sigma_{{D_{t} }} = \sqrt {\sigma_{{D_{\text{m}} }}^{2} + \left( {({\text{e}}^{\lambda t} - 1)\sigma_{{P_{\text{m}} }} } \right)^{2} + \left( {({\text{e}}^{\lambda t} - 1)P_{\text{m}} t\sigma_{\lambda } } \right)^{2} + \left( {({\text{e}}^{\lambda t} - 1)P_{\text{m}} \lambda \sigma_{t} } \right)^{2} }$$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Újvári, G., Klötzli, U. U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways. Int J Earth Sci (Geol Rundsch) 104, 1365–1385 (2015). https://doi.org/10.1007/s00531-014-1139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1139-x

Keywords

Navigation