Skip to main content

Advertisement

Log in

Geochemical and Sr–Nd isotope variations within Cretaceous continental flood-basalt suites of the Canadian High Arctic, with a focus on the Hassel Formation basalts of northeast Ellesmere Island

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Early- to mid-Cretaceous flood-basalt suites of the northeast Canadian High Arctic assigned to a High Arctic Large Igneous Province (HALIP) were studied for their whole-rock geochemistry and Sr–Nd isotopes. Data from basalt flows within the upper Albian to lower Cenomanian Hassel Formation of northeast Ellesmere Island are compared with former published data and new inductively coupled plasma mass spectrometry data of the stratigraphic equivalent Strand Fiord basalts and the older, late Hauterivian to Aptian Isachsen basalts from Axel Heiberg Island. The transitional to mildly alkaline aphyric Hassel basalts, with ocean island basalt (OIB)-like geochemical signatures in parts, have an Ar–Ar whole-rock age of on average 96.4 ± 1.6 Ma. They represent two geochemically different flow units without a fractional crystallization relationship: the high-phosphorous (HP) and low-phosphorous (LP) basalts. The Hassel HP basalts differ from the LP basalts by additionally higher Ba, K, Rb, Th and LREE contents, a pronounced positive Eu anomaly (Eu/Eu* = 1.74–1.76), as well as lower Ta, Nb, Zr and Hf concentrations. The Nd and Sr isotope ratios of the Hassel HP basalts [ε Nd(t) of −1.3 to −1.4, 87Sr/86Sr(t) of 0.70706–0.70707] and the LP basalts [ε Nd(t) of 4.5–4.9, 87Sr/86Sr(t) of 0.7038–0.7040] indicate an origin from different mantle sources. The geochemically similar tholeiitic Isachsen (ca. 130–113 Ma) and Strand Fiord basalts (ca. 105–95 Ma) are also incompatible element enriched relative to the primitive mantle, however, with negative Sr–P anomalies as well as partially negative K, Ta and Nb anomalies. In terms of incompatible element ratios (Zr/Nb, Nb/Th), several mantle components are involved in the formation of the flood-basalt suites: a component with primitive mantle composition, an OIB-like component (probably subducted and recycled oceanic crust) and an enriched lithospheric component. The latter component, probably metasomatized subcontinental lithospheric mantle, has contributed mainly to the Isachsen, Strand Fiord and Hassel HP basalts. In the Sr–Nd isotope system, the enriched lithospheric component is characterized by hypothetical values of ε Nd(t) of approximately −4, and 87Sr/86Sr(t) of approximately 0.7083. The HALIP-related flood-basalt suites of the Canadian High Arctic are interpreted to be part of a continental rift zone that was active during the opening of the Amerasia Basin of the Arctic Ocean and the development of the oceanic Alpha-Mendeleev Ridge into a Large Igneous Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abrahamsen N, Bengaard H-J, Friderichsen JD, Van der Voo R (1997) Palaeomagnetism of three dyke swarms in Nansen Land, north Greenland (83°N). Geol Mijnbouw 76:83–95

    Article  Google Scholar 

  • Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102:67–95

    Article  Google Scholar 

  • Avison HA (1987) 40Ar/39Ar age studies of mafic volcanics from the Sverdrup Basin, Arctic Canada. B.Sc. Honours thesis (unpubl.), Dalhousie University Halifax

  • Bailey JC, Brooks CK (1988) Petrochemistry and tectonic setting of Lower Cretaceous tholeiites from Franz Josef Land, USSR. Bull Geol Soc Den 37:31–49

    Google Scholar 

  • Bailey JC, Rasmussen MH (1997) Petrochemistry of Jurassic and Cretaceous tholeiites from Kong Karls Land, Svalbard, and their relation to Mesozoic magmatism in the Arctic. Polar Res 16:37–62

    Article  Google Scholar 

  • Balkwill HR (1978) Evolution of Sverdrup Basin, Arctic Canada. Am Assoc Petrol Geol Bull 62:1004–1028

    Google Scholar 

  • Balkwill HR (1983) Geology of Amund Ringnes, Cornwall and Haig Thomas islands, District of Franklin. Mem Geol Surv Can 390:1–76

    Google Scholar 

  • Batten DJ, Brown PE, Dawes PR, Higgins AK, Koch BE, Parsons I, Soper NJ (1981) Peralkaline volcanicity of the Eurasian Basin margin. Nature 294:150–152

    Article  Google Scholar 

  • Brown PE, Parsons I (1981) The Kap Washington Group volcanics. Rapp Grønlands geol Unders 106:65–68

    Google Scholar 

  • Brown PE, Parsons I, Becker SM (1987) Peralkaline volcanicity in the Arctic Basin—the Kap Washington Volcanics, petrology and palaeotectonics. J Geol Soc Lond 144:707–715

    Article  Google Scholar 

  • Buchan KL, Ernst R (2006) Giant dyke swarms and the reconstruction of the Canadian Arctic islands, Greenland, Svalbard and Franz Josef Land. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke swarms—time markers of crustal evolution. Taylor & Francis, London, pp 27–48

    Chapter  Google Scholar 

  • Campsie J, Rasmussen MH, Hansen N, Liebe CJ, Laursen J, Brochwicz-Levinski W, Johnson L (1988) K–Ar ages of Basaltic rocks collected during a traverse of the Frans Josef Land Archipelago (1895–1896). Polar Res 6:173–177

    Article  Google Scholar 

  • Coles RL, Taylor PT (1990) Magnetic anomalies. In: Grantz A, Johnson L, Sweeney JF (eds) The geology of North America, vol L. The Arctic Ocean region. Geol Society of America, Boulder, pp 119–132

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4(1):1–28. doi:10.1029/2002GC000333

    Article  Google Scholar 

  • Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504

    Article  Google Scholar 

  • Corfu F, Polteau S, Planke S, Faleide JI, Svensen H, Zayoncheck A, Stolbov N (2013) U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geol Mag. doi:10.1017/S0016756813000162

    Google Scholar 

  • Dawes PR, Soper NJ (1970) Geological investigations in northern Peary Land. Rapp Grønlands Geol Unders 28:9–15

    Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry. An introduction. Springer, Berlin, pp 1–187

    Book  Google Scholar 

  • Dibner VD (ed) (1998) Geology of Franz Josef Land. Norsk Polarinstitutt Meddelelser 146:1–190

  • Døssing A, Hopper JR, Olesen AV, Rasmussen TM, Halpenny J (2013a) New aero-gravity results from the Arctic: linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean. Geochem Geophys Geosyst 14. doi:10.1002/ggge.20253

  • Døssing A, Jackson HR, Matzka J, Einarsson I, Rasmussen TM, Olesen AV, Brozena JM (2013b) On the origin of the Amerasia Basin and the High Arctic Large Igneous Province—results of new aeromagnetic data. Earth Planet Sci Lett 363:219–230

    Article  Google Scholar 

  • Drachev S, Saunders A (2006) The Early Cretaceous Arctic LIP: its geodynamic setting and implications for Canada Basin opening. In: Scott RA, Thurston DK (eds) Proceedings of the fourth international conference on Arctic Margins, Anchorage, OCS Study, MMS 2006-003. US Department of the Interior, pp 216–223

  • Embry AF (1991) Mesozoic history of the Arctic Islands. In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, Geology of Canada 3 (also Geological Society of America, The Geology of North America E), pp 371–433

  • Embry AF, Osadetz KG (1988) Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago. Can J Earth Sci 25:1209–1219

    Article  Google Scholar 

  • Estrada S (2000) Basaltic Dykes in the Kap Washington and Frigg Fjord Areas (North Greenland). Polarforschung 68:19–23

    Google Scholar 

  • Estrada S, Henjes-Kunst F (2004) Volcanism in the Canadian High Arctic related to the opening of the Arctic Ocean. Zeitschrift der Deutschen Geologischen Gesellschaft 154:579–603

    Google Scholar 

  • Estrada S, Henjes-Kunst F (2013) 40Ar–39Ar and U–Pb dating of Cretaceous continental rift-related magmatism on the northeast Canadian Arctic margin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German J Geosci) 164:107–130

    Article  Google Scholar 

  • Estrada S, Höhndorf A, Henjes-Kunst F (2001) Cretaceous/Tertiary Volcanism in North Greenland: the Kap Washington Group. Polarforschung 69:17–23

    Google Scholar 

  • Estrada S, Piepjohn K, Henjes-Kunst F, von Gosen W (2006) Geology, magmatism and structural evolution of the Yelverton Bay area, northern Ellesmere Island, Arctic Canada. Polarforschung 73:59–75

    Google Scholar 

  • Estrada S, Henjes-Kunst F, Melcher F, Tessensohn F (2010) Paleocene alkaline volcanism in the Nares Strait region: evidence from volcanic pebbles. Int J Earth Sci 99:863–890

    Article  Google Scholar 

  • Forsyth DA, Morel-A-L’Hussier P, Asudeh I, Green AG (1986) Alpha Ridge and Iceland—products of the same plume? J Geodyn 6:197–214

    Article  Google Scholar 

  • Funck T, Jackson HR, Shimeld J (2011) The crustal structure of the Alpha Ridge at the transition to the Canadian polar margin: results from a seismic refraction experiment. J Geophys Res 116:B12101. doi:10.1029/2011JB008411

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Hilgen FJ (2012) On the geologic time scale. Newsl Stratigr 45:171–188

    Article  Google Scholar 

  • Grantz A, Clark DL, Phillips RL, Srivastava SP (1998) Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada basin, and the geometry and timing of rifting in the Amerasia basin, Arctic Ocean. GSA Bull 110:801–820

    Article  Google Scholar 

  • Grantz A, Hart PE, Childers VA (2011) Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. Geol Soc Lond Mem 35:771–799. doi:10.1144/M35.50

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the North American plate. Lithos 77:873–922

    Article  Google Scholar 

  • Grogan P, Nyberg K, Fotland B, Myklebust R, Dahlgren S, Riis F (2000) Cretaceous magmatism south and east of Svalbard: evidence from seismic reflection and magnetic data. Polarforschung 68:25–34

    Google Scholar 

  • Hawkesworth C, Scherstén A (2007) Mantle plumes and geochemistry. Chem Geol 241:319–331

    Article  Google Scholar 

  • Higgins AK, Soper NJ (1983) The Lake Hazen fault zone: a transpressional upthrust? Geol Surv Can Cur Res 83(1B):215–221

    Google Scholar 

  • Hooper PR, Hawkesworth CJ (1993) Isotope and geochemical constraints on the origin and evolution of the Columbia River basalt. J Petrol 34:1203–1246

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jackson HR, Forsyth DA, Johnson GL (1986) Oceanic affinities of the Alpha Ridge, Arctic Ocean. Mar Geol 73:237–261

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke HW, Zarayskaya Y, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik O, Kristoffersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39:L12609. doi:10.1029/2012GL052219

    Google Scholar 

  • King AJ, Waggoner DG, Garcia MO (1993) Geochemistry and petrology of basalts from leg 136, Central Pacific Ocean. In: Wilkens RH, Firth J, Bender J et al (eds) Proceedings of the ocean drilling program, scientific results, vol 136, pp 107–118

  • Kontak DJ, Jensen SM, Dostal J, Archibald DA, Kyser TK (2001) Cretaceous mafic dyke swarm, Peary Land, Northernmost Greenland: geochronology and petrology. Can Mineral 39:997–1020

    Article  Google Scholar 

  • Larsen O (1982) The age of the Kap Washington group volcanics, North Greenland. Bull Geol Soc Den 31:49–55

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Luttinen AV, Furnes H (2000) Flood basalts of Vestfjella: Jurassic magmatism across an Archaean–Proterozoic lithosphere boundary in Dronning Maud Land, Antarctica. J Petrol 41:1271–1305

    Article  Google Scholar 

  • MacDonald GA (1968) Composition and origin of Hawaiian lavas. In: Coats RR, Hay RL, Anderson CA (eds) Studies in volcanology: a memoir in honour of Howel Williams, vol 116. Geological Society of Amer. Mem., pp 477–522

  • MacRae RA, Hills LV, McIntyre DJ (1996) The Paleoecological significance of new species of Limbicysta (Acritarcha) from the upper Albian of the Canadian Arctic Islands. Can J Earth Sci 33:1475–1486

    Google Scholar 

  • Maher HD Jr (2001) Manifestations of the Cretaceous High Arctic Large Igneous Province in Svalbard. J Geol 109:91–104

    Article  Google Scholar 

  • Mayr U, Trettin HP (1996a) Geology, clements Markham inlet and part of Robeson Channel, District of Franklin, Northwest Territories. Geological Map 1883A, 1:250,000, Geological Survey Canada

  • Mayr U, Trettin HP (1996b) Geology, Tanquary Fiord, District of Franklin, Northwest Territories. Geological Map 1886A, 1:250,000, Geological Survey Canada

  • Miall AD (1984) Sedimentation and tectonics of a diffuse plate boundary: the Canadian Arctic Islands from 80 Ma B.P. to the present. Tectonophysics 107:261–277

    Article  Google Scholar 

  • Miall AD (1991) Late Cretaceous and Tertiary basin development and sedimentation, Arctic Islands. In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, Geology of Canada 3, Geological Survey of Canada (also Geological Society of America, The geology of North America E), pp 437–458

  • Nejbert K, Krajewski KP, Dubińska E, Pécskay Z (2011) Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Res 30:7306. doi:10.3402/polar.v30i0.7306

    Article  Google Scholar 

  • Nelson JB, Forsyth DA, Teskey D, Okulitch AV, Marcotte DL, Hardwick D, Bower ME, Macnab R (1992) The 1991 polar margin aeromagnetic survey in the Lincoln Sea, northern Ellesmere Island and northern Greenland. Geol Surv Can Curr Res 92(1B):31–35

    Google Scholar 

  • Nelson JB, Damaske D, Marcotte D, Hardwick D, Forsyth D, Keating P, Pilkington M, Okulitch A (1998) Preliminary results of the 1997 polar margin aeromagnetic program survey of northern Greenland and the Lincoln Sea. Geol Surv Can Curr Res 1998-D:37–42

    Google Scholar 

  • Ntaflos T, Richter W (2003) geochemical constraints on the origin of the continental flood basalt magmatism in Franz Josef Land, Arctic Russia. Eur J Mineral 15:649–663

    Article  Google Scholar 

  • Nuñez-Betelu LK, MacRae RA, Hills LV, Muecke GK (1994) Uppermost Albian-Campanian palynological biostratigraphy of Axel Heiberg and Ellesmere Islands (Canadian Arctic). In: Thurston DK, Fujita K (eds) Proceedings of the 1992 international conference on Arctic margins (Anchorage, Alaska), OCS Study MMS 94-0040, pp 135–142

  • Osadetz KG, Moore PR (1988) Basic volcanics in the Hassel Formation (Mid-Cretaceous) and Associated Intrusives, Ellesmere Island, District of Franklin, Northwest Territories. Geological Survey Canada, paper 87-21, pp 1–19

  • Patchett PJ, Embry AF, Ross GM, Beauchamp B, Harrison JC, Mayr U, Isachsen CE, Rosenberg EJ, Spence GO (2004) Sedimentary cover of the Canadian Shield through Mesozoic time reflected by Nd isotopic and geochemical results for the Sverdrup Basin, Arctic Canada. J Geol 112:39–57

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Peate DW (1997) The Paraná-Etendeka Province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces: continental, oceanic and planetary flood volcanism. Geophysical monograph, vol 100, pp 217–245

  • Piepjohn K, von Gosen W, Estrada S, Tessensohn F (2007) Deciphering superimposed Ellesmerian and Eurekan deformation, Piper Pass area, northern Ellesmere Island (Nunavut). Can J Earth Sci 44:1439–1452

    Article  Google Scholar 

  • Ricketts B, Osadetz KG, Embry AF (1985) Volcanic style in the Strand Fiord Formation (Upper Cretaceous), Axel Heiberg Island, Canadian Arctic Archipelago. Polar Res 3:107–122

    Article  Google Scholar 

  • Robinson JAC, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284

    Article  Google Scholar 

  • Saltus RW, Miller EL, Gaina C, Brown PJ (2011) Regional magnetic domains of the Circum-Arctic: a framework for geodynamic interpretation. Geol Soc Lond Mem 35:49–60

    Article  Google Scholar 

  • Shephard GE, Müller RD, Seton M (2013) The tectonic evolution of the Arctic since Pangea breakup: integrating constraints from surface geology and geophysics with mantle structure. Earth Sci Rev 124:148–183

    Article  Google Scholar 

  • Sheth HC, Zellmer GF, Kshirsagar PV, Cucciniello C (2013) Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke-flow relationships, and regional lava stratigraphy. Bull Volcanol 75:701. doi:10.1007/s00445-013-0701-x

    Article  Google Scholar 

  • Silantyev SA, Bogdanovskii OG, Fedorov PI, Karpenko SF, Kostitsyn YuA (2004) Intraplate magmatism of the De Long Islands: a response to the propagation of the ultraslow-spreading Gakkel Ridge margin in the Laptev Sea. Russ J Earth Sci 6:153–183

    Article  Google Scholar 

  • Sobolev P (2012) Cenozoic uplift and erosion of the Eastern Barents Sea—constraints from offshore well data and the implication for petroleum system modelling. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German J Geosci) 163:323–338

  • Soper NJ, Dawes PR, Higgins AK (1982) Cretaceous-Tertiary magmatic and tectonic events in North Greenland and the history of adjacent ocean basins. In: Dawes PR, Kerr JW (eds) Nares Strait and the drift of Greenland: a conflict in plate tectonics. Meddelelser om Grønland, Geoscience, vol 8, pp 205–220

  • Srivastava SP, Tapscott CR (1986) Plate kinematics of the North Atlantic. In: Vogt PR, Tucholke BE (eds) The Western North Atlantic Region. Geological Society of America M, pp 379–404

  • Steenfelt A, Garde AA, Moyen J-F (2005) Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland. Lithos 79:207–228

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommision on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Spec Publ Geol Soc London, pp 313–345

  • Takahahshi E, Nakajima K, Wright TL (1998) Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet Sci Lett 162:63–80

    Article  Google Scholar 

  • Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106. doi:10.1130/G32348.1

    Article  Google Scholar 

  • Tarduno JA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Evidence for extreme climatic warmth from Late Cretaceous arctic vertebrates. Science 282:2241–2243

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Taylor PT, Kovacs LC, Vogt PR, Johnson GL (1981) Detailed aeromagnetic investigation of the Arctic Basin: 2. J Geophys Res 86:6323–6333. doi:10.1029/JB086iB07p06323

    Article  Google Scholar 

  • Tegner C, Lesher CE, Larsen LM, Watt WS (1998) Evidence from the rare-earth-element record of mantle melting for cooling of the Tertiary Iceland plume. Nature 395:591–594

    Article  Google Scholar 

  • Tegner C, Storey M, Holm PM, Thorarinsson SB, Zhao X, Lo CH, Knudsen MF (2011) Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar–39Ar age of Kap Washington Group volcanics, North Greenland. Earth Planet Sci Lett 303:203–214

    Article  Google Scholar 

  • Tessensohn F, Piepjohn K (2000) Eocene compressive deformation in Arctic Canada, North Greenland and Svalbard and its plate tectonic causes. Polarforschung 68:121–124

    Google Scholar 

  • Thorarinsson SB, Holm PM, Tappe S, Heaman LM, Tegner C (2011a) Late Cretaceous–Palaeocene continental rifting in the High Arctic: U–Pb geochronology of the Kap Washington Group volcanic sequence, North Greenland. J Geol Soc 168:1093–1106

    Article  Google Scholar 

  • Thorarinsson SB, Holm PM, Duprat H, Tegner C (2011b) Silicic magmatism associated with Late Cretaceous rifting in the Arctic Basin–petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland. Lithos 125:65–85

    Article  Google Scholar 

  • Thorsteinsson R, Tozer ET (1970) Geology of the Arctic Archipelago. In: Douglass RJW (ed) Geology and economic minerals of Canada, economic geology report 1. Geological Survey of Canada, pp 547–590

  • Trettin HP (1991a) Tectonic Framework. In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, Geology of Canada 3, Geological Survey of Canada (also Geological Society of America, The geology of North America E), pp 59–66

  • Trettin HP (1991b) Geotectonic correlation chart. In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, Geology of Canada 3, Geological Survey of Canada (also Geological Society of America, The geology of North America E), Fig. 4, sheet 3

  • Trettin HP (1998) Pre-Carboniferous geology of the northern part of the Arctic islands. Chapter 4: geology of Pearya. Geol Surv Can Bull 425:108–192

    Google Scholar 

  • Trettin HP, Mayr U (1996) Geology, part of Lady Franklin Bay, District of Franklin, Northwest Territories. Geological Map 1887A, 1:250,000, Geological Survey Canada

  • Trettin HP, Parrish R (1987) Late Cretaceous bimodal magmatism, northern Ellesmere Island: isotopic age and origin. Can J Earth Sci 24:257–265

    Article  Google Scholar 

  • Villeneuve M, Williamson M-C (2006) 40Ar–39Ar dating of mafic magmatism from the Sverdrup Basin Magmatic Province. In: Scott RA, Thurston DK (eds) Proceedings of the fourth international conference on Arctic Margins (ICAM IV), Anchorage, OCS Study, MMS 2006-003. US Department of the Interior, pp 206–215

  • Wang K, Plank T, Walker JD, Smith EI (2002) A mantle melting profile across the Basin and Range. SW USA. J Geophys Res 107(B1):ECV 5-1–ECV 5-21. doi:10.1029/2001JB000209

    Google Scholar 

  • West HB, Garcia MO, Gerlach DC, Romano J (1992) Geochemistry of tholeiites from Lanai, Hawaii. Contrib Mineral Petrol 112:520–542

    Article  Google Scholar 

  • Williamson M-C (1988) The Cretaceous Igneous Province of the Sverdrup Basin, Canadian Arctic: field relations and petrochemical studies. Ph.D. thesis (unpubl.), Dalhousie University Halifax

  • Wilson M (1989) Igneous petrogenesis. Chapman and Hall, London

    Book  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

Download references

Acknowledgments

Thanks go to Franz Tessensohn, Karsten Piepjohn and Werner von Gosen for assistance in the field and fruitful discussions, as well as to the CASE 5 expedition team and the staff of the Polar Continental Shelf Program (PCSP) for logistical support. Friedhelm Henjes-Kunst has provided the Sm–Nd and Rb–Sr isotope data (Table 3), critically evaluated the Ar–Ar dating results (Table 4), and prepared the Figs. 11 and 12. I thank him for fruitful discussions, support in the interpretation of the isotope data, and critical reading of parts of the manuscript. Discussions on the Ar–Ar dating results with Yakov Kapusta (Actlabs Canada), information on aeromagnetic surveys by Detlef Damaske and improvements to the English text by Anthony Buglass are greatly acknowledged. I am grateful to Gianluca Groppelli and Hetu Sheth for their constructive reviews and critical comments, which greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solveig Estrada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada, S. Geochemical and Sr–Nd isotope variations within Cretaceous continental flood-basalt suites of the Canadian High Arctic, with a focus on the Hassel Formation basalts of northeast Ellesmere Island. Int J Earth Sci (Geol Rundsch) 104, 1981–2005 (2015). https://doi.org/10.1007/s00531-014-1066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1066-x

Keywords

Navigation