Skip to main content
Log in

Depletion, cryptic metasomatism, and modal metasomatism of central European lithospheric mantle: evidence from elemental and Li isotope compositions of spinel peridotite xenoliths, Kozákov volcano, Czech Republic

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Spinel peridotite xenoliths in 4.1 Ma basanite lava at Kozákov volcano vary in equilibration temperature from 675 to 1,135 °C and provide a continuous sample of lithospheric mantle from the Moho to a depth of ~82 km. The sub-Kozákov mantle is layered, consisting of an upper equigranular layer (UEL) from 32 to 45 km, an intermediate protogranular layer (PGL) from 45 to 66 km, and a lower equigranular layer (LEL) below 66 km. Relative to primitive mantle, all three layers are depleted in major incompatible elements and heavy rare earth elements, with the UEL being most depleted among the three layers, consisting of harzburgite and having experienced >15 % fractional melting. In contrast, the PGL and LEL experienced <10–15 % melting and consist of lherzolite; the PGL and LEL overlap in major element composition, with the PGL displaying a decreasing degree of depletion with depth. Subsequent metasomatism by silicate melt led to cryptic enrichments in large-ion lithophile elements, light REE, and high field strength elements over all the layers and, locally, modal enrichment in orthopyroxene. Metasomatism is accompanied by elevated whole-rock Li contents (1.2–3.6 ppm) and isotopically light δ7Li (−0.8 to −5.8 ‰). Lithium contents and δ7Li show no strong correlation with rock type or depth, although values of δ7Li are <−3.0 ‰ in the PGL and >−3.5 ‰ in the UEL and LEL. The layered structure and geochemical characteristics of sub-Kozákov lithospheric mantle are the product of Variscan or pre-Variscan melting, Variscan tectonics, and Neogene volcanism and metasomatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ackerman L, Mahlen N, Jelínek E, Medaris G Jr, Ulrych J, Strnad L, Mihaljevič M (2007) Geochemistry and evolution of subcontinental lithospheric mantle in Central Europe: evidence from peridotite xenoliths of the Kozákov volcano, Czech Republic. J Petrol 48:2235–2260

    Article  Google Scholar 

  • Ackerman L, Walker RJ, Puchtel IS et al (2009) Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: a study of the upper mantle profile beneath Central Europe. Geochim Cosmochim Acta 73:2400–2414

    Article  Google Scholar 

  • Ackerman L, Špaček P, Medaris G, Hegner E, Svojtka M, Ulrych J (2012) Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif. J Geosci 58:199–219

    Google Scholar 

  • Ackerman L, Špaček P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif. J Petrol 54:2597–2633

    Article  Google Scholar 

  • Albarède F (1995) Introduction to geochemical modelling. Cambridge University Press, Cambridge, 543 pp

    Book  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, an φ(pz) procedures. In: Newbury DE (ed) Microbeam analysis, proceedings of the 23rd annual conference of the Microbeam Analysis Society. San Francisco Press, San Francisco, pp 239–246

  • Aulbach S, Rudnick R (2009) Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27

    Article  Google Scholar 

  • Babuška V, Plomerová J (2001) Subcrustal lithosphere around the Saxothuringian–Moldanubian Suture Zone—a model derived from anisotropy of seismic wave velocities. Tectonophysics 332:185–199

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel composition in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Bedini RM, Bodinier JL (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    Article  Google Scholar 

  • Bertrand P, Mercier J-CC (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth Planet Sci Lett 76:109–122

    Article  Google Scholar 

  • Blusztajn J, Shimizu N (1994) The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chem Geol 111:227–243

    Article  Google Scholar 

  • Bodinier J-L, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido JC (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites: II. New thermobarometers and practical assessment of existing thermobarometry. J Petrol 31:1352–1378

    Google Scholar 

  • Čermák V, Král M, Krešl M, Kubík J, Šafanda J (1991) Heat flow, regional geophysics, and lithosphere structure in Czechoslovakia and adjacent parts of central Europe. In: Cermák V, Rybach L (eds) Terrestrial heat flow and lithosphere structure. Springer, New York, pp 33–165

    Google Scholar 

  • Christensen NI, Medaris LG Jr, Wang HF, Jelínek E (2001) Depth variation of seismic anisotropy and petrology in central European lithosphere: a tectonothermal synthesis from spinel lherzolite. J Geophys Res 106:645–664

    Article  Google Scholar 

  • Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33

    Article  Google Scholar 

  • Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J Petrol 42:233–250

    Article  Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for and association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 107:340–354

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICO–MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Farský F (1876) Mineralogische Notizen I. Mineralien aus der Kosakover Basaltkugeln. Verhandlugen der Kaiserlichen und Königlichen Geologischen Reichsanstalt Wien 205–208

  • Fediuk F (1971) Ultramafics of Krkonoše-Jizerské hory region. Acta Univ Carolinae Geol 4:310–343

    Google Scholar 

  • Fediuk F (1994) Deep-origin xenoliths in volcanics of Czechoslovakia. In: Bucha V, Blížkovský M (eds) Crustal structure of the bohemian massif and the west carpathians. Springer, New York, pp 277–281

    Google Scholar 

  • Flesch GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys 12:265–272

    Article  Google Scholar 

  • Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228

    Article  Google Scholar 

  • Gregoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts. J Petrol 41:477–509

    Article  Google Scholar 

  • Harvey J, Yoshikawa M, Hammond SJ, Burton KW (2012) Deciphering the trace element characteristics in Kilbourne Hole peridotite xenoliths: melt–rock interaction and metasomatism beneath the Rio Grande Rift, SW USA. J Petrol 53:1709–1742

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petrol 150:486–504

    Article  Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530

    Article  Google Scholar 

  • Ionov DA, Seitz H-M (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331

    Article  Google Scholar 

  • Ionov D, Chazot G, Chauvel C, Merlet C, Bodinier JL (2006) Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: a record of pervasive, multi-stage metasomatism in shallow refractory mantle. Geochim Cosmochim Acta 70:1231–1260

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H et al (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Proceedings of the 10th lunar planet science conference, pp 2031–2050

  • Jeffcoate AB, Elliott T, Kasemann SA et al (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  • Klemme S, O’Neill HSTC (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol 138:237–248

    Article  Google Scholar 

  • Konečný P, Ulrych J, Schovánek P, Huraiová M, Řanda Z (2006) Upper mantle xenoliths from the Pliocene Kozákov volcano, NE Bohemia: P–T–fO2 and geochemical constraints. Geol Carpath 5:379–396

    Google Scholar 

  • Kopecký L (1986) Geological development and block structure of the Cenozoic Ohre Rift (Czechoslovakia). In: Aldrich MJ, Laughlin AW (eds) Proceedings of the 6th international conference on basement tectonics, pp 114–124

  • Lenoir X, Garrido CJ, Bodinier JL, Dautria JM (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375

    Article  Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2004) Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int J Mass Spectrom 239:67–76

    Article  Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353

    Article  Google Scholar 

  • Magna T, Ionov DA, Oberli F, Wiechert U (2008) Links between mantle metasomatism and lithium isotopes: evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth Planet Sci Lett 276:214–222

    Article  Google Scholar 

  • Matusiak-Małek M, Puziewicz J, Ntaflos T, Grégoire M, Downes H (2010) Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: a case study of Lutynia (SW Poland) peridotite xenoliths. Lithos 117:49–60

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McDonough WF, Stosch HG, Ware NG (1992) Distribution of titanium and the rare earth elements between peridotitic minerals. Contrib Mineral Petrol 110:321–328

    Article  Google Scholar 

  • Medaris LG Jr, Fournelle JH, Wang HF, Jelínek E (1997) Thermobarometry and reconstructed chemical compositions of spinel-pyroxene symplectites: evidence for pre-existing garnet in lherzolite xenoliths from Czech Neogene lavas. Russ Geol Geophys 38:277–286

    Google Scholar 

  • Medaris LG Jr, Wang HF, Fournelle JH, Zimmer JH, Jelínek E (1999) A cautionary tale of spinel peridotite thermobarometry: an example from xenoliths of Kozákov volcano, Czech Republic. Geolines 9:92–95

    Google Scholar 

  • Mercier JC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255

    Article  Google Scholar 

  • O’Neill HSTC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2004) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW, Holland HD, Turekian KK (eds) The mantle and core. Elsevier, Oxford, pp 171–275

    Google Scholar 

  • Pogge von Strandmann PAE, Elliott T, Marschall HR et al (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75:5247–5268

    Article  Google Scholar 

  • Puziewicz J, Koepke J, Gregoire M, Ntaflos T, Matusiak-Malek M (2011) Lithospheric mantle modification during Cenozoic rifting in Central Europe: evidence from the Ksieginki nephelinite (SW Poland) xenolith suite. J Petrol 52:2107–2145

    Article  Google Scholar 

  • Puziewicz J, Czechowski L, Krysińóski L, Majorowicz J, Matusiak-Małek M, Wróblewska M (2012) Lithosphere thermal structure at the eastern margin of the Bohemian Massif: a case petrological and geophysical study of the Niedźwiedź amphibolite massif (SW Poland). Int J Earth Sci 101:1211–1228

    Article  Google Scholar 

  • Rosenbaum JM, Wilson M, Downes H (1997) Multiple enrichment of the Carpathian-Pannonian mantle: Pb–Sr–Nd isotope and trace element constraints. J Geophys Res 102:14947–14961

    Article  Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid–rock reaction. Earth Planet Sci Lett 256:278–293

    Article  Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741

    Article  Google Scholar 

  • Seitz H-M, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Lahaye Y et al (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177

    Article  Google Scholar 

  • Šibrava V, Havlíček P (1980) Radiometric age of Plio-Pleistocene volcanic rocks of the Bohemian Massif. Věstník Ústředního Ústavu Geologického 55:129–139

    Google Scholar 

  • Su B-X, Zhang H-F, Deloule E et al (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157

    Article  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M, Bodinier JL (1992) Geochemical evidence form melt migration and reaction in the upper mantle. Nature 359:55–58

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Nakamura E et al (2007) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt–rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Deloule E et al (2012a) Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos 149:79–90

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Nakamura E, Ying J-F (2012b) Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: constraints from the Li–Sr–Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol 161:845–861

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrb Geol Palaontol Abh 172:381–408

    Google Scholar 

  • Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144

    Article  Google Scholar 

  • Vokurka K, Povondra P (1983) Geothermometry and geobarometry of lherzolite nodules from Kozákov, NE Bohemia, Czechoslovakia. Acta Universitatis Carolinae Geologica 4:261–272

    Google Scholar 

  • Walter MJ (2004) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise geochemistry, vol 2—Mantle Core. Elsevier, Pergamon, pp 363–394

  • Wilson M, Downes H (1991) Tertiary–Quaternary extension-related alkaline magmatism in western and central Europe. J Petrol 32:811–850

    Article  Google Scholar 

  • Witt-Eickschen G (1993) Upper mantle xenoliths from alkali basalts of the Vogelsberg, Germany—implication for mantle upwelling and metasomatism. Eur J Mineral 5:361–376

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA, Mezger K, Eggins SM, Altherr R (2003) Lithospheric mantle evolution beneath the eifel (Germany): constraints from Sr–Nd–Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. J Petrol 44:1077–1095

    Article  Google Scholar 

  • Xu R, Liu Y, Tong X et al (2013) In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification. Chem Geol 354:107–123

    Article  Google Scholar 

  • Zhang H-F, Deloule E, Tang Y-J, Ying J-F (2010) Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contrib Mineral Petrol 160:261–277

    Article  Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to John Fournelle for his advice and direction in electron probe microanalysis in the Department of Geoscience, University of Wisconsin-Madison, to Jana Ďurišová and Šárka Matoušková for whole-rock trace element ICP-MS analyses and in situ laser ablation analyses at the Institute of Geology, Academy of Sciences CR, and to Jitka Míková and Vladislav Chrastný for maintenance of the clean lab and MC-ICP-MS facility at the Czech Geological Survey. This work has been supported in part by the Czech Science Foundation (GACR), Project P210/12/1990, and by the Institute of Geology, Academy of Sciences CR, Scientific Programme CEZ: RVO67985831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gordon Medaris Jr..

Appendix

Appendix

Electron microprobe analysis

Minerals were analyzed by wavelength-dispersion spectrometry (WDS) with a Cameca SX50 instrument at the University of Wisconsin. Operating conditions were as follows: 15 kV accelerating voltage, 20 nA beam current (Faraday cup), and beam diameter of 1 μm. Combinations of natural minerals and synthetic materials were used as standards for each of the mineral species, e.g., natural olivine for Mg, Fe, and Si and Ni metal for Ni in unknown olivine, synthetic spinel for Mg and Al and natural chromite for Fe and Cr in unknown spinel, and comparably appropriate combinations for orthopyroxene and clinopyroxene. Data reduction was performed by Probe for Windows software, utilizing the ϕ(ρz) matrix correction of Armstrong (1988).

Wet chemical technique

Major elements in whole-rock samples were determined by traditional wet-chemistry methods at the Faculty of Science, Charles University. Replicate analyses of reference standard, PCC-1, yield an average precision of ±5 % (1σ).

ICP-MS

Trace element concentrations in whole-rock samples were determined using an Element 2 sector field ICP-MS (Thermo-Finnigan) at the Institute of Geology v.v.i., Academy of Sciences CR, Prague, using the methods outlined in Ackerman et al. [this volume]. Precision of the analyses was typically better than 5 % for all analyzed elements, and the accuracy was monitored by repeated analyses of UB-N peridotite reference material (CNRS, France).

LA-ICP-MS

Trace elements in clinopyroxene were measured at the Institute of Geology v.v.i., Academy of Sciences CR, using an Element 2 ICP-MS coupled with a UP-213 213-nm Nd:YAG laser ablation system (New Wave Research). The analytical protocol followed that described in Ackerman et al. (this volume). In brief, the laser was fired with an output energy of 7–9 J/cm2 and repetition rate of 20 Hz. A 35- to 55-μm beam size was used, and all masses were measured at the low mass resolution mode (m/∆m = 300). Details on precision and accuracy of the analyses can be found in Ackerman et al. [this volume].

Lithium

The analytical procedures for lithium (Li) isolation and purification followed two-stage cation-exchange chromatography outlined in Magna et al. (2004) and Magna et al. (2006). Two olivine separates were washed in distilled 1 M HCl and de-ionized water prior to further chemical procedures in order to avoid contamination from grain-boundary components (cf. Seitz et al. 2004; Magna et al. 2006; Jeffcoate et al. 2007). Lithium abundances in clean Li fractions were determined using a Neptune multiple-collector ICP-MS, housed at the Czech Geological Survey, Prague, Czech Republic, by comparing the ion intensities of unknown samples with those of 1-, 10-, and 20-ppb L-SVEC reference solution (Flesch et al. 1973). Lithium isotopic compositions were measured with a Neptune MC-ICPMS with L4 and H4 Faraday cups for simultaneous collection of 6Li and 7Li, respectively. Bracketing with the L-SVEC reference solution was applied in order to correct for instrumental mass bias (Magna et al. 2004). The international reference rock materials JP-1 (peridotite; GSJ) and BHVO-2 (basalt; USGS) were used to monitor the precision and accuracy of the analytical procedure and their δ7Li of 3.76 ± 0.05 ‰ (n = 4) and 4.62 ± 0.24 ‰ (n = 7), respectively, are consistent with data published by Ackerman et al. (2013), Magna et al. (2006, 2008), and Pogge von Strandmann et al. (2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medaris, L.G., Ackerman, L., Jelínek, E. et al. Depletion, cryptic metasomatism, and modal metasomatism of central European lithospheric mantle: evidence from elemental and Li isotope compositions of spinel peridotite xenoliths, Kozákov volcano, Czech Republic. Int J Earth Sci (Geol Rundsch) 104, 1925–1956 (2015). https://doi.org/10.1007/s00531-014-1065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1065-y

Keywords

Navigation