Skip to main content
Log in

Are flood basalt eruptions monogenetic or polygenetic?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A fundamental classification of volcanoes divides them into “monogenetic” and “polygenetic.” We discuss whether flood basalt fields, the largest volcanic provinces, are monogenetic or polygenetic. A polygenetic volcano, whether a shield volcano or a stratovolcano, erupts from the same dominant conduit for millions of years (excepting volumetrically small flank eruptions). A flood basalt province, built from different eruptive fissures dispersed over wide areas, can be considered a polygenetic volcano without any dominant vent. However, in the same characteristic, a flood basalt province resembles a monogenetic volcanic field, with only the difference that individual eruptions in the latter are much smaller. This leads to the question how a flood basalt province can be two very different phenomena at the same time. Individual flood basalt eruptions have previously been considered monogenetic, contrasted by only their high magma output (and lava fluidity) with typical “small-volume monogenetic” volcanoes. Field data from Hawaiian shield volcanoes, Iceland, and the Deccan Traps show that whereas many feeder dykes were single magma injections, and the eruptions can be considered “large monogenetic” eruptions, multiple dykes are equally abundant. They indicate that the same dyke fissure repeatedly transported separate magma batches, feeding an eruption which was thus polygenetic by even the restricted definition (the same magma conduit). This recognition helps in understanding the volcanological, stratigraphic, and geochemical complexity of flood basalts. The need for clear concepts and terminology is, however, strong. We give reasons for replacing “monogenetic volcanic fields” with “diffuse volcanic fields” and for dropping the term “polygenetic” and describing such volcanoes simply and specifically as “shield volcanoes,” “stratovolcanoes,” and “flood basalt fields.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baksi AK (2014) The Deccan Trap—Cretaceous-Palaeogene boundary connection; new 40Ar/39Ar ages and critical assessment of existing data pertinent to this hypothesis. In: Sheth HC, Vanderkluysen L (eds) Flood basalts of Asia. J Asian Earth Sci 84:9–23

  • Bhattacharji S, Chatterjee N, Wampler JM, Nayak PN, Deshmukh SS (1996) Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: evidence from mafic dyke swarms. J Geol 104:379–398

    Article  Google Scholar 

  • Bondre NR, Duraiswami RA, Dole G (2004) Morphology and emplacement of flows from the Deccan volcanic province, India. Bull Volcanol 66:29–45

    Article  Google Scholar 

  • Bondre NR, Hart WK, Sheth HC (2006) Geology and geochemistry of the Sangamner mafic dyke swarm, western Deccan volcanic province, India: implications for regional stratigraphy. J Geol 114:155–170

    Article  Google Scholar 

  • Bryan SE, Ernst RE (2008) Revised definition of large igneous provinces (LIPs). Earth-Sci Rev 86:175–202

    Article  Google Scholar 

  • Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol Soc Am Bull 125:1053–1078

    Article  Google Scholar 

  • Bryan SE, Ukstins Peate I, Peate DW, Self S, Jerram DA, Mawby MR, Marsh JS, Miller JA (2010) The largest volcanic eruptions on Earth. Earth-Sci Rev 102:207–229

    Article  Google Scholar 

  • Budkewitsch P, Robin PY (1994) Modelling the evolution of columnar joints. J Volcanol Geotherm Res 59:219–239

    Article  Google Scholar 

  • Camp VE, Roobol MJ, Hooper PR (1991) The Arabian continental alkali basalt province: Part II, Evolution of Harrats Kura, Khaybar, and Ithnayn, Kingdom of Saudi Arabia. Geol Soc Am Bull 103:363–391

    Article  Google Scholar 

  • Cañón-Tapia E (2010) Origin of large igneous provinces: the importance of a definition. In: Cañón-Tapia E, Szakács A (eds) What is a volcano? Geol Soc Am Spec Pap 470:77–101

  • Cañón-Tapia E, Coe R (2002) Rock magnetic evidence of inflation of a flood basalt flow. Bull Volcanol 64:289–302

    Article  Google Scholar 

  • Cañón-Tapia E, Herrero-Bervera E (2009) Is the Pringle Fallas excursion a product of geomagnetic field behaviour or an artefact of sedimentation processes? Insights from anisotropy of magnetic susceptibility (AMS) analyses. Geophys J Int 178:702–712

    Article  Google Scholar 

  • Cañón-Tapia E, Szakács A (2010) What is a volcano? Geol Soc Am Spec Pap 470:140

    Google Scholar 

  • Cañón-Tapia E, Walker GPL (2004) Global aspects of volcanism: the perspectives of “plate tectonics” and “volcanic systems”. Earth-Sci Rev 66:163–182

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Univ Press, Oxford, p 510

    Google Scholar 

  • Chandrasekharam D, Mahoney JJ, Sheth HC, Duncan RA (1999) Elemental and Nd–Sr–Pb isotope geochemistry of flows and dykes from the Tapi rift, Deccan flood basalt province, India. J Volcanol Geotherm Res 93:111–123

    Article  Google Scholar 

  • Coe RS, Prévot M, Camps P (1995) New evidence for extraordinarily rapid change of the geomagnetic field during a reversal. Nature 374:687–692

    Article  Google Scholar 

  • Condit CD, Crumpler LS, Aubele JC, Elston W (1989) Patterns of volcanism along the southern margin of the Colorado Plateau: the Springerville field. J Geophys Res 94:7975–7986

    Article  Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 331–343

    Google Scholar 

  • Crookshank H (1936) Geology of the northern slopes of the Satpuras between the Morand and Sher rivers. Mem Geol Surv Ind 66:173–181

    Google Scholar 

  • Delaney PT, Pollard DD (1982) Solidification of basaltic magma during flow in a dyke. Am J Sci 282:856–885

    Article  Google Scholar 

  • Dessai AG, Downes H, Lopez-Moro F-J, Lopez-Plaza M (2008) Lower crustal contamination of Deccan Traps magmas: evidence from tholeiitic dykes and granulite xenoliths from western India. Mineral Petrol 93:243–272

    Article  Google Scholar 

  • Duffield WA (2005) Volcanoes of northern Arizona. Grand Canyon Assoc, 68 p

  • Duraiswami RA, Shaikh TN (2013) Geology of the saucer-shaped sill near Mahad, western Deccan Traps, India, and its significance to the flood basalt model. Bull Volcanol 75:731

    Article  Google Scholar 

  • Emeleus CH, Bell BR (2005) The Palaeogene volcanic districts of Scotland, 4th edn. British Geol Surv, Nottingham 212 p

    Google Scholar 

  • Epp D, Decker RW, Okamura AT (1983) Relation of summit deformation to east rift zone eruptions on Kilauea volcano. Geophys Res Lett 10:493–496

    Article  Google Scholar 

  • Fedotov SA (1981) Magma rates in feeding conduits of different volcanic centers. J Volcanol Geotherm Res 9:379–394

    Article  Google Scholar 

  • Fialko YA, Rubin AM (1999) Thermal and mechanical aspects of magma emplacement in giant dyke swarms. J Geophys Res 104:23033–23049

    Article  Google Scholar 

  • Galindo E, Gudmundsson A (2012) Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Nat Hazards Earth Syst Sci 12:3683–3700

    Article  Google Scholar 

  • Grunder AL, Taubeneck WH (1997) Partial melting of tonalite at the margins of Columbia River Basalt Group dykes, Wallowa Mountains. Oregon. Geol Soc Am Abstr Prog 29:18

    Google Scholar 

  • Gudmundsson A (1990) Dyke emplacement at divergent plate boundaries. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanisms. Balkema, Rotterdam, pp 47–62

    Google Scholar 

  • Gudmundsson A (1995a) The geometry and growth of dykes. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 23–34

    Google Scholar 

  • Gudmundsson A (1995b) Infrastructure and mechanics of volcanic systems in Iceland. J Volcanol Geotherm Res 64:1–22

    Article  Google Scholar 

  • Gudmundsson A (2002) Emplacement and arrest of sheets and dykes in central volcanoes. J Volcanol Geotherm Res 116:279–298

    Article  Google Scholar 

  • Gudmundsson A (2012) Magma chambers: formation, local stresses excess pressures, and compartments. J Volcanol Geotherm Res 237–238:19–41

    Article  Google Scholar 

  • Gudmundsson A, Brenner SL (2005) On the conditions of sheet injections and eruptions in stratovolcanoes. Bull Volcanol 67:768–782

    Article  Google Scholar 

  • Gudmundsson A, Marinoni LB (2002) Geometry, emplacement, and arrest of dykes. Annal Tecto 13:71–92

    Google Scholar 

  • Gudmundsson A, Oskarsson N, Gronvold K, Saemundsson K, Sigurdsson O, Stefansson R, Gislason SR, Einarsson P, Brandsdottir B, Larsen G, Johnannesson H, Thordarson Th (1992) The 1991 eruption of Hekla, Iceland. Bull Volcanol 54:238–246

    Google Scholar 

  • Hardee HC (1987) Heat and mass transport in the east-rift-zone magma conduit of Kilauea volcano. US Geol Surv Prof Pap 1350(1):471–1486

    Google Scholar 

  • Hintz AR, Valentine GA (2012) Complex plumbing of monogenetic scoria cones: New insights from the Lunar Crater Volcanic Field (Nevada, USA). J Volcanol Geotherm Res 239–240:19–32

    Article  Google Scholar 

  • Hooper PR (1985) A case of simple magma mixing in the Columbia River Basalt Group; the Wilbur Creek, Lapwai, and Asotin flows, Saddle Mountains Formation. Contrib Miner Petrol 91:66–73

    Article  Google Scholar 

  • Jerram DA (2002) Volcanology and facies architecture of flood basalts. In: Menzies MA, Klemperer SL, Ebinger CJ, Baker J (eds) Magmatic rifted margins. Geol Soc Am Spec Pap 362:119–132

  • Keating G, Valentine G, Krier D, Perry F (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582

    Article  Google Scholar 

  • Keshav S, Sheth HC, Chandrasekharam D (1998) Field geology, petrography, and orthopyroxene clusters of the Dhule-Parola dyke, Tapi valley, central Deccan basalt province. Curr Sci 74:252–254

    Google Scholar 

  • Keszthelyi L, Self S, Thordarson Th (1999) Application of recent studies on the emplacement of basaltic lava flows to the Deccan Traps. In: Subbarao KV (ed), Deccan volcanic province. Mem Geol Soc Ind 43:485–520

  • Kshirsagar PV, Sheth HC, Shaikh B (2011) Mafic alkalic magmatism in central Kachchh, India: a monogenetic volcanic field in the northwestern Deccan Traps. Bull Volcanol 73:595–612

    Article  Google Scholar 

  • Luhr JF, Simkin T (1993) Parícutin: the volcano born in a Mexican cornfield. Geosci Press, Phoenix, p 441

    Google Scholar 

  • Mahoney JJ (1988) Deccan Traps. In: Macdougall JD (ed) Continental flood basalts. Kluwer Acad Publ, Dordrecht, pp 151–194

    Chapter  Google Scholar 

  • Melluso L, Sethna SF, Morra V, Khateeb A, Javeri P (1999) Petrology of the mafic dyke swarm of the Tapti River in the Nandurbar area (Deccan volcanic province). In: Subbarao KV (ed), Deccan volcanic province. Geol Soc Ind Mem 43(2):735–755

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress. J Volcanol Geotherm Res 2:1–16

    Article  Google Scholar 

  • Németh K (2004) The morphology and origin of wide craters at Al Haruj al Abyad, Libya: maars and phreatomagmatism in a large intracontinental flood lava field? Z Geomorph 48:417–439

    Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañon-Tapia E, Szakács A (eds) What is a volcano? Geol Soc Am Spec Pap 470:43–66

  • Németh K, Suwesi SK, Peregi Z, Gulacsi Z, Ujszaszi J (2003) Plio/Pleistocene flood basalt related scoria and spatter cones, rootless lava flows, and pit craters, Al Haruj al Abyad, Libya. GeoLines 15:98–103

    Google Scholar 

  • Németh K, Martin U, Haller MJ, Alric VI (2007) Cenozoic diatreme field in Chubut (Argentina) as evidence of phreatomagmatic volcanism accompanied with extensive Patagonian plateau basalt volcanism? Episodes 30:217–223

    Google Scholar 

  • Odé H (1957) Mechanical analysis of the dyke pattern of the Spanish Peaks area, Colorado. Geol Soc Am Bull 68:567–576

    Article  Google Scholar 

  • Parfitt EA, Wilson L (2008) Fundamentals of physical volcanology. Blackwell Publ, New Jersey, p 230

    Google Scholar 

  • Petcovic HL, Dufek JD (2005) Modelling magma flow and cooling in dykes: implications for emplacement of Columbia River flood basalts. J Geophys Res 110:1–15

    Google Scholar 

  • Petronis MS, Delcamp A, van Wyk de Vries B (2013) Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and paleomagnetic data. Bull Volcanol 75:753–775

    Article  Google Scholar 

  • Philpotts AR, Ague JJ (2009) Principles of igneous and metamorphic petrology, 2nd edn. Cambridge Univ Press, Cambridge, p 667

    Book  Google Scholar 

  • Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørensen A (2008) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204

    Article  Google Scholar 

  • Ray R, Sheth HC, Mallik J (2007) Structure and emplacement of the Nandurbar-Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bull Volcanol 69:531–537

    Article  Google Scholar 

  • Reches Z, Fink J (1988) The mechanism of intrusion of the Inyo Dyke, long Valley Caldera, California. J Geophys Res 93:4321–4334

    Article  Google Scholar 

  • Reidel SP (1998) Emplacement of Columbia River flood basalt. J Geophys Res 103:27393–27410

    Article  Google Scholar 

  • Reidel SP, Fecht KR (1987) The Huntzinger flow: evidence of surface mixing of the Columbia River Basalt and its petrogenetic implication. Geol Soc Am Bull 98:664–677

    Article  Google Scholar 

  • Ryan MP, Sammis CG (1981) The glass transition in basalt. J Geophys Res 86:9519–9535

    Article  Google Scholar 

  • Scarth A, Tanguy J-C (2001) Volcanoes of Europe. Oxford Univ Press, New York, p 243

    Google Scholar 

  • Schmincke H-U (2004) Volcanism. Springer Verlag, Berlin, p 324

    Book  Google Scholar 

  • Self S, Thordarson Th, Keszthelyi L (1997) Emplacement of continental flood basalt lava flows. In: Mahoney JJ, Coffin MF (eds), Large igneous provinces: continental, oceanic, and planetary Flood Volcanism. Am Geophys Union Geophys Monogr 100:381–410

  • Sen G (1980) Mineralogical Variations in the Delakhari Sill, Deccan Trap Intrusion, Central India. Contrib Miner Petrol 75:71–78

    Article  Google Scholar 

  • Sheth HC (2006) The emplacement of pahoehoe lavas on Kilauea and in the Deccan Traps. J Earth Syst Sci 115:615–629

    Article  Google Scholar 

  • Sheth HC (2007) ‘Large Igneous Provinces (LIPs)’: definition, recommended terminology, and a hierarchical classification. Earth-Sci Rev 85:117–124

    Article  Google Scholar 

  • Sheth HC (2012) Evolution of the polygenetic cinder cone of Barren Island, an explosive-effusive mafic arc volcano in the Andaman Sea (NE Indian Ocean). Abstract, 4th Int Maar Conf, Auckland, New Zealand: 72–73

  • Sheth HC, Ray JS, Ray R, Vanderkluysen L, Mahoney JJ, Kumar A, Shukla AD, Das P, Adhikari S, Jana B (2009) Geology and geochemistry of Pachmarhi dykes and sills, Satpura Gondwana Basin, central India: problems of dyke-sill-flow correlations in the Deccan Traps. Contrib Miner Petrol 158:357–380

    Article  Google Scholar 

  • Sheth HC, Zellmer GF, Demonterova EI, Ivanov AV, Kumar R, Patel RK (2014) The Deccan tholeiite lavas and dykes of Ghatkopar-Powai area, Mumbai, Panvel flexure zone: geochemistry, stratigraphic status and tectonic significance. In: Sheth HC, Vanderkluysen L (eds) Flood basalts of Asia. J Asian Earth Sci 84:9–23

  • Silver PG, Behn MD, Kelley K, Schmitz M, Savage B (2006) Understanding cratonic flood basalts. Earth Planet Sci Lett 245:190–201

    Article  Google Scholar 

  • Swanson DA, Wright RL, Helz RT (1975) Linear vent systems and estimated rates of magma production and eruption for the Yakima Basalt on the Columbia Plateau. Am J Sci 275:877–905

    Article  Google Scholar 

  • Szakács A (1994) Redefining active volcanoes: a discussion. Bull Volcanol 56:321–325

    Article  Google Scholar 

  • Szakács A (2010) From a definition of volcano to conceptual volcanology. In: In: Cañón-Tapia E, Szakács A (eds) What is a Volcano? Geol Soc Am Spec Pap 470:67–76

  • Szakács A, Cañon-Tapia E (2010) Some challenging new perspectives of volcanology. In: In: Cañón-Tapia E, Szakács A (eds) What is a Volcano? Geol Soc Am Spec Pap 470:123–140

  • Takada A (1994a) Development of a subvolcanic structure by the interaction of liquid-filled cracks. J Volcanol Geotherm Res 62:207–224

    Article  Google Scholar 

  • Takada A (1994b) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99:13563–13573

    Article  Google Scholar 

  • Thordarson Th, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43:118–152

    Article  Google Scholar 

  • Thordarson Th, Self S (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull Volcanol 55:233–263

    Article  Google Scholar 

  • Thordarson Th, Self S (1998) The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103:27411–27445

    Article  Google Scholar 

  • Valentine GA, Krogh KEC (2006) Emplacement of shallow dykes and sills beneath a small basaltic volcanic center—the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230

    Article  Google Scholar 

  • Vanderkluysen L, Mahoney JJ, Hooper PR, Sheth HC, Ray R (2011) The feeder system of the Deccan Traps (India): insights from dyke geochemistry. J Petrol 52:315–343

    Article  Google Scholar 

  • Vye-Brown C, Self S, Barry TL (2013a) Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group NW USA. Bull Volcanol 75:697

    Article  Google Scholar 

  • Vye-Brown C, Gannoun A, Barry TL, Self S, Burton KW (2013b) Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province. Earth Planet Sci Lett 368:183–194

    Article  Google Scholar 

  • Wadge G (1982) Steady state volcanism: evidence from eruption histories of polygenetic volcanoes. J Geophys Res 87:4035–4049

    Article  Google Scholar 

  • Walker GPL (1971) Compound and simple lava flows and flood basalts. In: Aswathanarayana U (ed), Deccan Trap and other flood eruptions, Part I. Bull Volcanol 35:579–590

  • Walker GPL (1986) The dyke complex of Koolau volcano, Oahu: intensity and origin of a sheeted-dyke complex high in a Hawaiian volcanic edifice. Geology 14:310–313

    Article  Google Scholar 

  • Walker GPL (1992) Coherent intrusion complexes in large basaltic volcanoes—a new structural model. J Volcanol Geotherm Res 50:41–54

    Article  Google Scholar 

  • Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Spec Publ 76:3–38

  • Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Volcanol Geotherm Res 94:21–34

    Article  Google Scholar 

  • Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encylopedia of volcanoes. Academic Press, New York, pp 283–289

    Google Scholar 

  • Walker GPL, Eyre R, Spengler SR, Knight MD, Kennedy K (1995) Congruent dyke-widths in large basaltic volcanoes. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 35–40

    Google Scholar 

Download references

Acknowledgements

Sheth’s field work in the Deccan Traps over the past many years has been supported by Grants 03IR014 and 09YIA001 from the Industrial Research and Consultancy Center (IRCC), IIT Bombay. He thanks Ninad Bondre, Stephen Self, and Loÿc Vanderkluysen for some stimulating discussions on flood basalt architecture. Partial support to Cañón-Tapia has been provided by CONACYT grant 183116. Helpful journal reviews by Agust Gudmundsson and Agnes Kontny and comments from the handling editor Wolfram Geissler led to considerable improvement in our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetu C. Sheth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, H.C., Cañón-Tapia, E. Are flood basalt eruptions monogenetic or polygenetic?. Int J Earth Sci (Geol Rundsch) 104, 2147–2162 (2015). https://doi.org/10.1007/s00531-014-1048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1048-z

Keywords

Navigation